Introduction. Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability. Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely,
The two distinct surgical techniques for total knee arthroplasty (TKA) are
Most of in vivo kinematic studies of total knee arthroplasty (TKA) have reported on varus knee. TKA for the valgus knee deformity is a surgical challenge. The purposes of the current study are to analyze the in vivo kinematic motion and to compare kinematic patterns between weight-bearing (WB) and non-weight-bearing (NWB) knee flexion in posterior-stabilized (PS) fixed-bearing TKA with pre-operative valgus deformity. A total of sixteen valgus knees in 12 cases that underwent TKA with Scorpio NRG PS knee prosthesis operated by modified gap balancing technique were evaluated. The mean preoperative femorotibial angle (FTA) was 156°±4.2°. During the surgery, distal femur and proximal tibia was cut perpendicular to the mechanical axis of each bone. After excision of the menisci and cruciate ligaments, balancer (Stryker joint dependent kinematics balancer) was inserted into the gap between both bones for evaluation of extension gap. Lateral release was performed in extension. Iliotibial bundle (ITB) was released from Gerdy tubercle then posterolateral capsule was released at the level of the proximal tibial cut surface. If still unbalanced, pie-crust ITB from inside-out was added at 1 cm above joint line until an even lateral and medial gap had been achieved. Flexion gap balance was obtained predominantly by the bone cut of the posterior femoral condyle. Good postoperative stability in extension and flexion was confirmed by stress roentgenogram and axial radiography of the distal femur. We evaluated the in vivo kinematics of the knee using fluoroscopy and femorotibial translation relative to the tibial tray using a 2-dimentional to 3-dimensional registration technique.Backgrounds
Methods
Postoperative functional outcomes and patients’ satisfaction after total knee arthroplasty are associated with postoperative range of motion. Severe deformities require surgical correction such as soft tissue release and appropriate bone resection. The goal of surgery is to correct the contracture and bring the knee to good range of motion. Using
Introduction. Instability is a common reason for revision after total knee arthroplasty. A balanced flexion gap is likely to enhance stability throughout the arc of motion. This is achieved differently by the gap balancing and measured resection techniques. Given similar clinical results with the two techniques, one would expect similar rotation of the femoral component in the axial plane. We assessed posterior-stabilized femoral component axial rotation placed with computer navigation and a modified gap balancing technique. We hypothesized that there would be little variation in rotation. Methods. 90 surgeons from 8 countries used a modified
Introduction/Aim. Mid-flexion instability is a well-documented, but often poorly understood cause of failure of TKA. NAVIO robotic-assisted TKA (RA-TKA) offers a novel, integrative approach as a planning, execution as well as an evaluation tool in TKA surgery. RA-TKA provides a hybrid planning technique of measured resection and gap balancing- generating a predictive soft-tissue balance model, prior to making cuts. Concurrently, the system uses a semi-active robot to facilitate both the execution and verification of the plan, as it pertains to both the static and dynamic anatomy. The goal of this study was to assess the ability of the NAVIO RA-TKA to plan, execute and deliver an individualized approach to the soft-tissue balance of the knee, specifically in the “mid-flexion” arc of motion. Materials and Methods. Between May and September 2018, 50 patients underwent NAVIO RA-TKA. Baseline demographics were collected, including age, gender, BMI, and range of motion. The NAVIO imageless technique was used to plan the procedure, including: surface-mapping of the static anatomy; objective assessment of the dynamic, soft-tissue anatomy; and then application of a hybrid of measured-resection and
Computer assisted total knee arthroplasty helps in accurate and reproducible implant positioning, bony alignment, and soft-tissue balancing which are important for the success of the procedure. In TKR, there are two surgical techniques one is measured resection in which bony landmarks are used to guide the bone cuts and the other is gap balancing which equal collateral ligament tension in flexion and extension is done before and as a guide to final bone cuts. Both these procedures have their own advantages and disadvantages. We retrospectively collected the data of 128 consecutive patients who underwent computer-assisted primary TKA using either a
Introduction. Mid-flexion stability after total knee arthroplasty (TKA) is dependent, in large part, on implant design. Design variables include retention or sacrifice of the posterior cruciate ligament, conformity of the polyethylene tibial surface, and radius of curvature of the femoral component. In this study, we attempted to isolate the impact of femoral component design by comparing a single-radius design (SR) to a J-Curve design (JC). We selected cruciate-retaining implants to eliminate the effect of a cam-and-post mechanism. Mid-flexion performance these two designs were compared using the Lower-Quarter Y-Balance Test (YBT-LQ), as well as patient reported outcomes and measures of physical performance. The YBT-LQ is a simple functional test of unilateral lower extremity strength and balance. Reach of the contralateral limb is measured in three different directions (Figures 1–3). Our hypothesis was that the SR design would provide superior mid-flexion stability, and therefore, a greater reach distance in the YBT-LQ when compared to the JC group. Methods. Patients undergoing primary, unilateral TKA were prospectively enrolled and block randomized to receive either the SR (n=30) or JC (n=30) implant. All surgeries were performed by one surgeon using a
Aim. Computer-navigated total knee arthroplasty has been shown to improve the outcome in outliers with consistent results. The aim of this study is to evaluate the clinical and radiographic outcomes of computer-navigated knee arthroplasty with respect to deformity and body mass index (BMI). Materials and Methods. Data was prospectively collected for 117 consecutive patients undergoing primary computer-navigated total knee arthroplasty using Ci Brainlab system with J&J PFC PS implants by a single surgeon utilising a tibia cut first,
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods
While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes. This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.Aims
Methods
Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction. This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.Aims
Methods
Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))? Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined.Aims
Methods
Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.
Simultaneous bilateral total knee arthroplasty (TKA) has been used due to its financial advantages, overall resource usage, and convenience for the patient. The training model where a trainee performs the first TKA, followed by the trainer surgeon performing the second TKA, is a unique model to our institution. This study aims to analyze the functional and clinical outcomes of bilateral simultaneous TKA when performed by a trainee or a supervising surgeon, and also to assess these outcomes based on which side was done by the trainee or by the surgeon. This was a retrospective cohort study of all simultaneous bilateral TKAs performed by a single surgeon in an academic institution between May 2003 and November 2017. Exclusion criteria were the use of partial knee arthroplasty procedures, staged bilateral procedures, and procedures not performed by the senior author on one side and the trainee on another. Primary clinical outcomes of interest included revision and re-revision. Primary functional outcomes included the Oxford Knee Score (OKS) and patient satisfaction scores.Aims
Methods
It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.Aims
Methods
The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed.Objectives
Methods