Advertisement for orthosearch.org.uk
Results 1 - 20 of 201
Results per page:
Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 32 - 32
1 Oct 2019
Matta J Delagramaticas D Tatka J
Full Access

Background. Total hip arthroplasty requires proper sizing and placing of implants to ensure excellent outcomes and reduce complications. Calculation of femoral offset is an important consideration for optimal reconstruction of the hip biomechanics. Femoral offset can be measured on plain films or with flouroscopy if the x-ray beam is perpendicular to the plane determined by the angle between the neck axis and femoral shaft axis. This distance is evident only with the femur in the correct degree of rotation. Though pre-operative templating for femoral component size and offset is a regular accepted practice, a consistent method for assessing correct femoral rotation on the AP x-ray view has not been established. Purpose/Hypthesis. The purpose of the current study was to establish and validate a method for identifying radiographic landmarks on the proximal femur that would reliably indicate that the femur was in the proper degree of rotation to represent the true offset from the head center to shaft center. Methods. Lead markers were placed on areas of the greater trochanter followed by xrays. Markers placed on locations on the anterior and posterior greater trochanter duplicated reliable radiographic lines. Proximal femurs were dissected to the bone and rotated about their long axis from neutral rotation, defined at the point when the anterior and posterior aspects of the greater trochanter were aligned radiographically. Radiographs were taken at 2 degree increments in both internal and external rotation until 10 degrees, then again at 30 degrees. A custom script was used to calculate the femoral offset at these rotations at these locations. Descriptive analysis was performed to assess the relationship between rotation angle and femoral offset. Results. The mean femoral offset was observed to be 38.21 mm (SD 4.93, median 37.82, range 30.52–46.27). The mean rotation of max offset was −3.6° (SD 5.6, median −6, range −10 to +8). The average underestimation error (the difference between calculated offset at neutral rotation and observed maximum femoral offset) was 0.92 mm (median 0.74, range 0 to 2.07 mm). Conclusion. Alignment of the radiographic lines created by the anterior and posterior aspects of the greater trochanter is a reliable and accurate rotational positioning method for measuring femoral offset when using plain films or fluoroscopy. It is a feasible method that can be applied preoperatively and/or intraoperatively to optimize accuracy of femoral offset for THA procedures. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 71 - 71
1 Jan 2017
Yabuno K Sawada N Etani Y
Full Access

Instability following total hip arthroplasty (THA) is an unfortunately frequent and serious problem that requires thorough evaluation and preoperative planning before surgical intervention. Prevention through optimal index surgery is of great importance, as the management of an unstable THA is challenging even for an experienced joints surgeon. However, even after well-planned surgery, a significant incidence of recurrent instability still exists. Moreover leg-length discrepancy (LLD) after THA can pose a substantial problem for the orthopaedic surgeon. Such discrepancy has been associated with complications including nerve palsy, low back pain, and abnormal gait. Consequently we may use a big femoral head or increase femoral offset (FO) in unstable THA for avoiding LLD. However we do not know the relationship between FO and STT. The objective of this study is to assess hip instability of three different FOs in same patient undergoing THA during an operation. We performed 70 patients who had undergone unilateral THA using CT based navigation system at a single institution for advanced osteoarthoritis from May 2013 to May 2014. We used postero-lateral approach in all patients. After cup and stem implantation, we assessed soft tissue tensioning in THA during operation. Trial necks were categorized into one of three groups: standard femoral offset (sFO), high femoral offset (hFO, +4mm compared to sFO) and extensive high femoral offset (ehFO, +8 mm compared to sFO). We measured distance of lift-off about each of three femoral necks using CT based navigation system and a force gauge with hip flexed at 0 degrees and 30 degrees under a traction of lower extremity. Traction force was 40% of body weight. Forty patients had leg length restored to within +/− 3mm of the contralateral side by post-operative CT analysis. We examined these patients. Traction force was 214±41.1Nm. The distances of lift-off were 8.8±4.5mm (sFO), 7.4±4.1mm (eFO), 5.1±3.9mm (ehFO) with 0 degrees hip flexion and neutral abduction(Abd) / adduction(Add) and neutral internal rotation(IR)/ external rotation(ER). The distance of lift-off were 11.5±5.9mm (sFO),10.5±5.5mm (eFO),9.1±5.9mm (ehFO) with 30 degrees hip flexion and neutral Abd / Add and neutral IR/ER. Significant difference was observed between 0 degrees hip flexion and 30 degrees hip flexion on each FO (p<0.05). On changing the distance of lift-off, hFO to ehFO (2.2±1.6mm)was more stable than sFO to hFO (1.4±1.7mm)with 0degrees hip flexion.(p<0.05). On the other hands, hFO to ehFO (1.4±1.6mm) was more stable than sFO to hFO (1.0±1.3mm) with 30 degrees hip flexion. However, we did not find significant difference (p=0.18). Hip instability was found at 30 degrees hip flexion more than at 0 degrees hip flexion. We found that changing ehFO to sFO can lead to more stability improvement of soft tissue tensioning than sFO to eFO, especially at 0 degrees hip flexion. Whereas In a few cases, the distance of lift-off did not change with increasing femoral offset by 4mm. When you need more stability in THA without LLD, We recommend increasing FO by 8mm


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 64 - 64
1 Dec 2013
Noticewala M Cassidy K Macaulay W Lee J Geller J
Full Access

Introduction:. Total hip arthroplasty (THA) is extremely effective in treating debilitating arthritic conditions of the hip. With the many modular prosthetic designs available, surgeons can now precisely construct mechanical parameters such as femoral offset (FO). Although several studies have investigated relationships between offset choice and hip abductor strength, hip range of motion, and prosthetic wear rate, there is scarce data on the effect of FO on pain and functional outcomes following THA. The objective of this study was to assess the effect of restoring FO (within varying degrees compared to the contralateral non-diseased hip [CL]) on physical function, mental well-being, pain, and stiffness outcomes as measured by the Short Form 12 Health Survey (SF-12) and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) at post-operative follow-up. Methods:. We prospectively collected data on 249 patients that underwent unilateral THA with no or minimal disease of the contralateral hip. Baseline data collection included: age, gender, diagnosis, femoral head size, type of stem, and pre-operative SF-12 and WOMAC scores. Post-operative SF-12 and WOMAC scores were recorded during annual follow-up visits. Post-operative FO was retrospectively measured on standard anteroposterior (AP) pelvis radiographs and compared to FO of CL. FO was measured as the perpendicular distance from the femoral head center of rotation to the anatomic axis of the femur with appropriate adjustments made for image magnification. Patients were categorized into one of three groups: decreased femoral offset (dFO, less than −5 mm compared to CL), normal femoral offset (nFO, between −5 and +5 mm of CL), and increased femoral offset (iFO, greater than +5 mm compared to CL). Results:. In all, 31 patients were categorized into dFO, 163 categorized into nFO, and 55 categorized into iFO. At baseline, the groups differed in categorical diagnoses (p = 0.01). Further analysis revealed a higher percentage of posttraumatic arthritis in dFO as compared to nFO and iFO (12.9%, 1.2%, and 1.8%, respectively). Moreover, a higher percentage of hip dysplasia was present in iFO as compared to nFO and dFO (14.5%, 3.6%, and 6.5%, respectively). Pre-operatively, dFO had lower WOMAC Pain scores than nFO and iFO (29.68, 43.39, and 43.63, respectively; p < 0.005). (Please see Table 1 for comparison of baseline characteristics between groups.) All other pre-operative demographic and survey characteristics were similar. At most recent post-operative follow-up, dFO had lower WOMAC Physical Function scores than nFO and iFO (72.03, 83.23, and 79.51, respectively; p < 0.02) (see Table 2). Discussion:. Reduction of patients' native FOs by greater than 5 mm during THA can lead to inferior levels of physical function. Furthermore, increasing FO by greater than 5 mm did not lead to increased levels of pain nor decreased levels of function


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 498 - 499
1 Nov 2011
Lardanchet J Havet E Manopoulos P Vernois J Mertl P
Full Access

Purpose of the study: Theoretically, in first-intention total hip arthroplasty (THA), restoration of femoral offset (distance between the femoral axis and the joint centre) enables optimal function. The purpose of this study was to determine acceptable limits for variation in femoral offset without loss of function. Material and method: We studied 122 hips (108 patients) who had THA with a straight cemented stem and a modular cone which could be adapted to enable three dimensional adjustment of the offset (more than 100 configurations). Mean patient age was 64 years. Most had primary or secondary degenerative disease (n=80) of the hip joint or osteonecrosis of the femoral head (n=21). The preoperative PMA score was 11.9 and the Harris score 49. Clinical and radiographic assessment was noted at mean 4.5 years follow-up. The radiographic femoral offset was measured semiautomatically in comparison with the healthy hip using the method described by Steinberg and Harris. Results: At last follow-up, the mean PMA score was 16.4 and the mean Harris score 89. These clinically scores were statistically different depending on the degree of variation of the femoral offset. Outcome was better for offset increased 0 to 5 mm (PMA 17 and Harris 93). They were less satisfactory for decreased offset (PMA 15.9 and Harris 83) (p=0.01). They were also less satisfactory for an offset increased more than 8 mm, but non significantly. Discussion: It has been established that increasing the femoral offset decreases the rate of dislocation, reduces the incidence of limping, the use of crutches, and increases the force of the gluteus medius, as well as range of motion and abduction. However, there is no known limit value. Conclusion: It is advisable to increase the femoral offset during total hip arthroplasty; the increase should be to the order of 0 to 5 mm, and never be too great


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 343 - 343
1 Dec 2013
Hayashi S Fujishiro T Hashimoto S Kanzaki N Nishiyama T Kurosaka M
Full Access

Introduction:. Implant dislocations are often caused by implant or bone impingement, and less impingement is critical to prevent dislocations. Several reports demonstrated that greater femoral offset delayed bony impingement and led to an improved range of motion (ROM) after THA. Therefore, an increase in the femoral offset may improve ROM and decrease implant dislocation. The aim of this study was to clarify the effect of the femoral offset in avoiding component or bony impingement after total hip arthroplasty (THA). Methods:. Seventy-eight patients underwent THA with a Pinnacle cup and Summit stem (DePuy). Intraoperative kinematic analysis was performed with a navigation system, which was used to obtain intraoperative range of motion (ROM) measurements during trial insertion of stems of 2 different offset lengths with the same head size. Further, ROM was also measured after actual component insertion. Results:. Maximal ROM was independent of the femoral offset of the stem in each patient (Figure 1). Further, we measured the intraoperative maximal ROM corresponding to high offset stems of 2 different lengths (stem sizes 1–3; + 6 mm, stem sizes 4–9; +8 mm), and compared the maximal ROMs between the standard- and high-offset stems. There were no statistically significant differences (Figure 2). These results indicate that an excessive offset length of the stem may not affect ROM. We also analyzed the correlation between femoral offset length and ROM, and found that the range of external rotation was significantly greater in patients with greater femoral offset (RR = 0.36, P = 0.02) (Figure 3). However, we could not show any correlation for the ROM values in the other planes of motion. Discussions:. Summit stem is available in 9 different sizes with standard offset lengths ranging from 36.0 mm to 44.0 mm. The average offset of Summit stem was larger than other stems. These differences in offset length could be the reason why the high offset stem did not change maximal ROM in our study. Further, the summit stem employs 2 different types of high offset lengths (+6 mm and +8 mm). We did not find any difference in maximal ROM even after using the +8 mm high offset stem. Our results indicated that even the Summit standard offset stem might have enough femoral offset to avoid implant/bone impingement. However, several reports showed that increasing stem offset increased the bending moment on the prosthesis and increased the strain in the medial cortex, and may lead to early failure of the femoral component. Nevertheless, selection of the offset stem should be performed carefully to prevent offset complications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 131 - 131
1 Dec 2013
Murphy J Courtney P Lee G
Full Access

Proper restoration of posterior condylar offset during TKA has been shown to be important to maximize range of motion and minimize flexion instability. However, there is little information as to the importance of restoration of mid-sagittal femoral geometry. There is controversy as to whether a TKA prosthesis should have a single radius or multiple radii of curvature. The purpose of this study is to evaluate the effectiveness of a multi-radius femoral component at restoring mid sagittal femoral offset. A consecutive series of 100 TKAs with digital preoperative and postoperative radiographs and standardized radiographic markers were analyzed. There were 71 female and 29 male knees with mean age of 59 years. All TKAs were performed by a single surgeon using a multi-radius femoral component design. The distal femoral resection was set to resect 10 mm from the distal femoral condyle and a posterior referencing system was used to size the femoral component. Using radiographic perfect lateral projections of the knees, a line was drawn along the posterior femoral shaft and another parallel line down the anterior femoral shaft. A 3rd line was then drawn parallel to the posterior shaft at the furthest point posterior on the condyle. A 4th line was drawn parallel to the anterior shaft at the furthest point anterior on the femur. 90 degree angles were constructed to create a grid in the anterior and posterior directions, similar to a previously reported technique. Finally, 45 degree angle lines were created in the grid to assess mid flexion dimensions [Fig-1 and 2]. The percent change in posterior condylar offset (PCO), anterior femoral offset (AFO), mid femoral anterior offset (MAFO) and mid femoral posterior offset (MFPO) were calculated. The mean reproduction of the mid-anterior femoral offset and mid-posterior femoral offset were 101.1% [range 56.5%–167.5%] and 96.8% [range 54.9%–149.0%] of preoperative measurements respectively. The average restoration of posterior offset and anterior offset were 92.8% [range 49.0%–129.8%] and 115.3% of preoperative measurements [range 35.7%–400.0%] respectively. When the posterior condylar offset was restored to within 10% of the native anatomy, the MPFO restoration more closely resembled normal anatomy (103.0% vs. 93.9%, p = 0.005). When the postoperative posterior condylar offset was decreased greater than 20%, both the MAFO (90.1% vs. 104.5%, p = 0.004) and MPFO (78.5% vs. 102.9%, p < 0.001) decreased compared to the native knee. There was no relationship between restoration of the PCO and the MAFO correction (104.6% vs. 99.4%, p = 0.213). Finally, there was no correlation between restoration of anterior femoral offset within 10% of normal and the restoration of mid sagittal femoral offset; 98.0% vs 102.0% for MAFO (p = 0.320) and 98.7% vs 96.3% for MPFO (p = 0.569). A modern multi-radius condylar knee design is capable of reproducing the mid-sagittal geometry of the preoperative knee. However, the restoration of mid sagittal offset is largely dependent on the restoration of the posterior condylar offset. Intraoperative adjustments in anterior and posterior femoral resections can have significant impact in the ability of the implant to reproduce mid-sagittal femoral anatomy


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 360 - 360
1 Mar 2004
Ritchie J Fordyce M
Full Access

Aims: Femoral offset is routinely measured prior to total hip arthroplasty in order to recreate the position of optimum abductor function. We aim to determine how radiologically measured offset changes with hip rotation and to evaluate the clinical relevance of any changes. Methods: We took standardised radiographs of a proximal femur at ten degree increments of rotation and measured the offset derived in each position. We then measured the apparent offset obtained in full internal and external rotation in a series of twenty consecutive patients attending for hip arthroplasty. Results: The model demonstrated that femoral offset is maximal between ten and twenty degrees of internal rotation and that small changes in rotation can cause large changes in apparent offset. From the clinical series of elderly, arthritic patients we show that there is a signiþcant change (mean of 11.4mm or 29%) in measured offset between internal and external rotation. In our series this discrepancy would have led to a change in selected femoral prosthesis in almost half the cases. Conclusion: Femoral offset measurements are only accurate, and therefore useful, if taken with the hip in or close to þfteen degrees of internal rotation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 26 - 26
1 Jan 2016
Stevens A Hussenbocus S Wilson C Mercer G Krishnan J
Full Access

Introduction. Total hip replacement (THR) is a very common procedure performed for the treatment of osteoarthritis of the hip. The aim of THR is to restore function and quality of life of the patients, by restoring femoral offset, leg length, centre of rotation, and achieving stability, to avoid dislocation postoperatively. Method. We aimed to perform preoperative assessment of femoral offset on anteroposterior (AP) radiographs of the hip, and on corresponding CT scans, for patients undergoing primary THR. Patients were positioned according to a standardised protocol prior to obtaining radiographs of the hip and CT scan. Inter- and intra-observer reliability was evaluated between 3 observers of differing levels of seniority – an orthopaedic trainee, a fellow, and a consultant. CT scan measurements of offset were performed by one consultant radiologist. The researchers measuring radiographic offset were blinded to the results of the CT measurements. Results. In the entire cohort of 50 patients, the mean femoral offset was 44 mm on AP radiographs of the hip and 45 mm on CT scans. No significant difference in mean femoral offset was seen between AP radiographs of the hip and CT. There was good inter and intra-observer reliability in the measurement of femoral offset on AP radiographs of the hip. There was no difference in the radiographic measurements between observers of differing levels of seniority. Conclusions. Accurate restoration of femoral offset is very important in the good functioning of THR. AP radiographs of the hip are accurate, and should be routinely obtained preoperatively for templating, prior to THR


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 123 - 124
1 Apr 2005
Durand J Limozin R Semay J Fessy M
Full Access

Purpose: Polyethylene wear in total hip arthroplasty remains the most limiting factor for implant survival. Several predictive factors are well identified, but the position of the articulating pieces remains to be studied in detail. We searched for a correlation between polyethylene wear and the position of the femoral and acetabular pieces, particularly the femoral offset. Material and methods: Sixty-six patients underwent total hip arthroplasty for osteoarthritis or osteonecrosis. The patients were reviewed at 10.8 years (four bilateral prostheses). The preoperative, immediate postoperative (1 month) and last follow-up (10 years) AP pelvis views were digitalized. A dedicated software traced the different axes for measurement. Wear at ten years, femoral offset, cup eccentration or medialisation, ascent or descent, and cup inclination were measured. Results: Mean polyethylene wear was 1.23 mm at ten years with linear curve of 0.11 mm/yr. Preoperative femoral offset was restored in 71.4% of the cases. Univariate regression analysis revealed that only femoral offset was correlated with less wear at ten years. Polyethylene wear at ten years fell from 1.26 mm for preoperative offset restitution less than 98% to 1.13 mm for restitution greater than 102%. Discussion: Image processing allowed greater accuracy in the measurement of polyethylene wear. The rate of wear reported in the literature ranges from 0.1 to .015 mm/yr. Restitution of femoral offset guarantees less wear due to the reduction in the resultant force applied on the articulation as well as stress on the implants. Furthermore hip stability is improved. Several factors are involved in production of wear debris and correct restitution of the centre of rotation is only one of the elements which reduce wear. Conclusion: Wear was not excessive in this series. Among the position parameters, only femoral offset had an influence, having a beneficial effect on polyethylene wear. This emphasises the importance of having a wide variety of implants available in order to respond to the different anatomic presentations of the femur


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 144 - 145
1 Mar 2008
Lavigne M Vendittoli P Roy A Girard J
Full Access

Purpose: Femoral offset restoration is recognised as an important part of THA procedure to reduce the joint reactive force and improve stability. In SRA, femoral offset is often reduced due to the femoral component valgus position. The main objective of this study was to correlate the clinical function of SRA and THA patients with their different biomechanical hip reconstruction (femoral offset). Methods: 156 patients aged 23 to 65 years old and suffering from advanced hip joint degeneration were randomly assigned to two treatment groups: the THA or SRA group. All surgeries were performed through a posterior approach. Standardized pre and post operative antero-posterior radiographs of the pelvis were made and clinical scores were assessed. Results: Compared to the normal contra lateral side, the femoral offset increased on average 4.85mm (range -2.77 to 11.59mm, SD 3.31) for THA and decreased an average of 3.42mm (range −7.78 to 1.96, SD 2.12) for SRA (p=0.0001). In addition, offset restoration was within lees than 4 mm in 60.0% of the SRA group and 21.8% in the THA group (p=0.0001). There were no differences between the both groups in terms of clinical and subjective scores: the PMA and SF-36 scores were, respectively, in average 17.1 (SD 0.4) and 101 (SD 1.25) for THA and 17.0 (SD 0.4) and 101 (SD 1.14) for SRA. No relation was found between offset restoration and clinical scores for both groups. Conclusions: In this study, surgeons were less precise reconstructing the femoral offset in the THA group compared to the SRA group. However, femoral offset was lower (reduced) in the SRA in comparison to THA. This significant decreased femoral offset in SRA, seems inherent to the preferential valgus positioning of the femoral component in that technique. The excellent clinical outcome reported with SRA does not suggest that restoring normal offset is as crucial for the success of SRA because no correlation was found between femoral offset and the clinical scores used


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 67 - 67
1 Nov 2018
Güngörürler M Havıtçıoğlu H
Full Access

After total hip replacement, force generating capacity of gluteal muscles is an impotant parameter on joint contact forces and primary fixation of total hip replacement. Femoral offset is an option to optimize muscle moment arms, especially main abductor Gluteus Medius and Minimus. To investigate relationship with weak gluteal muscles (Gluteus Medius and Minimus) and increased femoral offset, we build a musculoskeletal model. Creating of three-dimensional femur geometry and scaling of the musculoskeletal model according to the subject were performed with computed tomography data. Obtained gait kinematic and kinetic data were applied and to mimic gluteal muscle weakness, the force generating capacities of Gluteus Medius and Minimus reduced (%20-%80). Analysis were done for both anatomical and +10mm offset. Then, muscle and joint reaction forces obtained from musculoskeletal analysis transfered to CT based finite element model to evaluate changes in maximum principle stresses on femur. According to the results of the musculoskeletal analysis, the weakness of the gluteal muscles caused an increase in the activation of Gluteus Maximus, Rectus Femoris and Tensor Fasciae Latae. Effects of +10 mm femoral offset on total abductor muscle activity increased with reduced muscle strength. As a result of the finite element analysis, no significant difference was observed for maximum principle stresses on femur with varying muscle activites. The results of these analyses are important to understand weakness of gluteal muscles and for planning hip surgery


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 370 - 370
1 Oct 2006
Loughead J Chesney D Holland J McCaskie A
Full Access

Introduction: Patients following resurfacing frequently remark about the natural feel of the resurfaced hip joint in contrast to those with total hip arthroplasty. Possible reasons for this include the larger femoral head size, conservation of bone and superior biomechanics of the implant with more accurate restoration of femoral offset, leg length and femoral anteversion. Our aim was to assess femoral offset and leg length following hip resurfacing and hybrid THR (uncemented acetabulum) performed by the same surgeon. Methods: A consecutive group of patients were identified (35 resurfacing and 25 hybrid). AP pelvis radiographs were evalulated, films with evidence of malrotation or inadequate imaging of the femur were excluded, leaving 21 resurfacing and 15 hybrid. Comparison was made between the pre-op and post-op films together with the contralateral hip on the same film. Patients with hip dysplasia or significant pathology in the contralateral hip were excluded. Magnification of the films was measured by comparison of the templated diameter of the implanted femoral head and the acutal diameter of the implant. To allow comparison between pre-op films a measurement was taken between the obturaror foraminae. All films were analysed by the same investigator using the technique described by Jolles et al (J Arthroplasty 2002). A horizontal line was drawn between the base of the teardrop on both sides, and perpendicular lines drawn from the back of the teardrops. The anatomical femoral axis was drawn and femoral offset measured from this. The centre of rotation of the femoral head was determined by templating and the acetabular offset obtained. Distance from tip of the greater trochanter to the centre of the femoral head in the axis of the femur was determined on pre and post-op films, as this shows little variation with rotation of the femur. Leg length was measured from the horizontal line to the tip of the greater trochanter together with the angle between the femoral axis and the horizontal to correct for abduction of the hip. Results: Mean total femoral offset compared to the contralateral side was −1.3mm (SD 5.3) and −3.2mm (SD 6.5) for the resurfacing and hybrid groups respectively. No significant difference was detected in leg length or other measurements. Discussion and Conclusion: No significant differences were demonstrated between femoral offset or leg length in the resurfacing and hybrid arthroplasty groups. This study does not support the hypothesis that resurfacing produces more accurate restoration of hip biomechanics than hybrid total hip arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 1 - 1
1 Jan 2016
Shah A
Full Access

Introduction. One of the important criteria of the success of TKR is achievement of the Flexion ROM. Various factors responsible to achieve flexion are technique, Implant and patient related. Creation of the Posterior condylar offset is one such important factor to achieve satisfactory flexion. Aim. To correlate post op femoral condylar offset to final flexion ROM at 1 yr. post op. Methods. This is a clinico-radiological study of the cases done prospectively between September 2011 and August 2012. Inclusion criteria:. All patients undergoing Bilateral TKRs and have agreed for the follow up at 1 yr. Exclusion criteria:. Patients who had previous bony surgery on lower end femur. Patients with previous fracture of lower end femur. All the patients had PS PFC Sigma (De Puy, Warsaw) components cemented. ROMs were measured at 6 weeks, 3 months, & 1 year post op. The last reading was taken as final flexion ROM as measured by a Physiotherapist with the help of a Goniometer. Results. We had 21 cases of Bilateral TKRs who satisfied our criteria. Pre and post op femoral condylar offset was measured in mm. on lateral x ray. Pre and post op flexion was measured. Results showed that variation in the posterior femoral offset by > 3mm in post op x ray was related to loss of flexion of an average 21 deg. (16 – 24 degrees). Greater the deflection from the normal offset, greater was the loss of flexion. These patients also showed lesser improvement in KSS functional score. Discussion. Flexion is one of the most important yardsticks for the measurement of success of TKR. This factor is more important more so in Asian population. Literature has shown that three important determinants for good flexion are…. Posterior Condylar Offset Restoration. Tibial slope restoration. Femoral Roll back in flexion. An increased offset permits greater flexion before impingement between the tibial insert and the femur. In our study we kept Tibial slope and Femoral Roll back constant by using the same prosthesis. The femoral condylar offset changed as per the size of the AP femoral cutting block. (Anterior referencing guide used). Overresection of the posterior condyles reduced the posterior femoral condylar offset and hence significant loss of post op flexion. The shorter posterior condyle of smaller femoral component can increase the potential for bone impingement proximal to the posterior condyles. In our study the opposite side replaced knee acted as a control. It is generally stated that after a TKR flexion can improve upto 1 year and hence was taken as final possible flexion. Conclusion. Keeping Tibial slope and Femoral roll back constant during the surgery, posterior condylar offset restoration within 3 mm of its original pre op offset was necessary to achieve satisfactory flexion at 1 year. Undersizing the femoral component to achieve more flexion is perhaps suboptimal. Appropriate AP femoral sizing is a must to restore the normal offset


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 394 - 394
1 Jul 2010
Couch M Carson J Griffiths P Barrett M Scott S
Full Access

Introduction: Modular prostheses were first developed for use in total hip arthroplasty (THA) in the 1980s as a potential solution to the problem of leg length inequality. There is much literature discussing the advantages and disadvantages of modularity in THA but there are few studies directly comparing modular and non-modular prostheses and their accuracy in restoring normal anatomy. Our aim was to assess whether modularity in THA improves the restoration of femoral offset and leg length. Methods: An analysis of post-operative radiographs of 76 patients who underwent THA - 38 using modular and 38 using non-modular prostheses was undertaken. The femoral offset and leg length of the operated and un-operated hip were measured for each patient. Inter-and intra-observer errors were reduced to a minimum. A two-tailed T test was then applied to the data. Results: Restoration of leg length (to within +/− 10mm of the un-operated hip) was achieved in 81.6% of patients in the non-modular group, compared to 78.9% in the modular group (p=0.60). On average, the modular system increases leg length of the operated hip by 0.64mm compared to the non-modular system, which reduces leg length by 3.76mm (p=0.016). The femoral offset is restored to within 5mm of the un-operated hip in 60.5% of modular THA and in 55.3% using a non-modular prosthesis (P=0.48). On average, modular prostheses increased offset by 0.85mm and non-modular prostheses by 0.15mm (P=0.64). Discussion: The modular and non-modular hip prostheses are equally successful in achieving restoration of leg length and femoral offset to the pre-pathological state


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 530 - 530
1 Oct 2010
Sexton S Jackson M Martell J Walter W Zicat B
Full Access

Introduction: Dislocation is the most common complication resulting in re-operation after total hip arthroplasty. This study investigates the association between acetabular prosthesis position, changes in femoral offset and leg length and the risk of dislocation. Patients and Methods: All total hip arthroplasties performed over the past 17 years at one institution were reviewed. The posterolateral approach was used in all cases. Only hips that included all of the following were included in the study: diagnosis of primary osteoarthritis, no previous surgery, unconstrained liner. 3682 hips met the inclusion criteria. 60 hips (1.6%) sustained a dislocation. Cup inclination and version was determined from scanned radiographs using Hip Analysis Suite software (University of Chicago) in all hips that dislocated and a control group of 60 patients matched for femoral head size, sex, age at surgery, side of hip replacement, time from surgery, BMI, type of prosthesis and bearing surface. We compared femoral offset and length against the contralateral normal hip, on standardised radiographs. Therefore dislocation cases where the contralateral hip had been replaced, where arthritic changes were present, or where previous surgery had been undertaken were not included in the analysis. 24 dislocating hips were measured and compared with 48 controls matched using the same criteria as above. Radiographs were analysed using Hip Analysis Suite. Results: There is a statistically significant difference (p=0.025) in anteversion between dislocators and matched controls. Inclination is not significantly associated with dislocation (p=0.536). There is a relative risk of 3.0 of dislocation in cups with ≤15 degrees of anteversion compared with > 15 degrees of anteversion. This difference in dislocation is statistically significant (p< 0.01). Increased femoral offset compared with the normal contralateral hip is statistically significantly associated with an increased risk of dislocation (p=0.03). Change in leg length is not associated with dislocation risk. Discussion: Decreased cup anteversion is associated with an increased risk of dislocation in hips operated on via the postero-lateral approach. Our results indicate that the surgeon should aim for a minimum of 15 degrees of anteversion to reduce the risk of dislocation. The increase in femoral offset in the prosthetic hip compared with the normal contralateral hip and its association with dislocation may be due to intraoperative attempts to compensate for an unstable hip by increasing offset. These results indicate that a surgeon should be cautious when increasing femoral offset alone to try and compensate for a potentially unstable hip. Other factors, for example acetabular version should be addressed, with readjustment of cup position intra-operatively if required


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 61 - 61
1 May 2016
Jenny J Honecker S Diesinger Y
Full Access

INTRODUCTION. One of the main goals of total knee arthroplasty (TKA) is to restore an adequate range of motion. The posterior femoral offset (PFO) may have a significant influence on the final flexion angle after TKA. The purpose of the present study was to compare the conventional, radiologic measurement of the PFO before and after TKA to the intra-operative, navigated measurement of the antero-posterior femoral dimension before and after TKA implantation. MATERIAL. 100 consecutive cases referred for end-stage knee osteo-arthritis have been included. Inclusion criteria were the availability of pre-TKA and post-TKA lateral X-rays and a navigated TKA implantation. There was no exclusion criterion. METHODS. Pre-TKA and post-TKA digital lateral X-rays were performed with fluoroscopic control of the superposition of both femoral. The PFO was defined as the distance between the anterior femoral cortex and the most posterior point of the femoral condyles (figure 1). The TKA was implanted with help of a navigation system. The standard navigated procedure involves a navigated palpation of the anterior femoral cortex just proximal to the trochlea (figure 2) and a navigated palpation of the most posterior point of both femoral condyles (figure 3), allowing computation of the pre-TKA navigated PFO. The post-TKA PFO was calculated according to the the antero-posterior position of the prosthetic trochlea in comparison to the anterior femoral cortex and the size of the femoral implant. Pre-TKA and post-TKA radiologic and navigated measurements of the PFO were compared with a paired Student t-test and calculation of the coefficient of linear correlation. The coherence between the data was analyzed according to Bland-Altman. The radiologic and navigated PFO changes were compared with a paired Student t-test and calculation of the coefficient of linear correlation. The sample size was calculated to allow detecting a 3 mm difference at a 0.05 level of significance and a power of 0.90. All statistical tests were performed at a 0.05 level of significance. RESULTS. The mean paired difference between pre-TKA radiologic and navigated measurement was 3.8 mm ± 4.1 mm (range, −5.2 to 17.9 mm) (p<0.001). There was a significant moderate positive correlation between both measurements (R² = 0.41, p<0.001). There was a good coherence between both measurements (R² = 0.04). The mean paired difference between post-TKA radiologic and navigated measurement was 5.9 mm ± 4.8 mm (range, −24.0 to 16.9 mm) (p<0.001). There was a significant moderate positive correlation between both measurements (R² = 0.51, p<0.001). There was a poor coherence between both measurements (R² = 0.11). The mean paired radiologic PFO change was 1.5 mm ± 5.2 mm. The mean paired navigated PFO change was −0.9 mm ± 4.0 mm (range, −14.0 to 12.2 mm) (p<0.001). There was a significant weak positive correlation between both measurements (R² = 0.21, p<0.001). There was a good coherence between both measurements (R² = 0.002). DISCUSSION. We observed a significant difference between radiologic and navigated results. This difference is likely to be clinically significant. CONCLUSION. Radiological measurement of the femoral offset is not reliable either before or after TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 152 - 152
1 Dec 2013
Pour AE Lazennec JY Brusson A Rousseau M Clarke I
Full Access

Introduction. Accurate evaluation of femoral offset is difficult with conventional anteroposterior (AP) X-rays. Routine CT imaging is costly and exposes patients to a significant dose of radiation. The EOS® imaging system is an innovative slot-scanning radiography system that makes possible the acquisition of simultaneous and orthogonal AP and lateral images of the patient in standing position. These 2-dimensional (2D) images are equivalent to standard plane X-rays. Three-dimension (3D) reconstructions are obtained from these paired images according to a validated protocol. This prospective study explores for the first time the value of the EOS® imaging system for comparing measurements of femoral offset obtained from 2D images and 3D reconstructions. Materials and Methods. Following our standard protocol, we included a series of 100 patients with unilateral total hip arthroplasty (THA). The 2D offset was measured on the AP view with the same protocol as for standard X-rays. The 3D offset was calculated from the reconstructions based on the orthogonal AP and lateral views. Reproducibility and repeatability studies were conducted for each measurement. We compared the 2D and 3D offsets for both hips (with and without THA). Results. For the global series (100 hips with and 100 without THA), the 2D offset was 40 mm (SD: 7.3; range 7 to 57 mm). The standard deviation was 6.5 mm for repeatability and 7.5 mm for reproducibility. The 3D offset was 43 mm (SD: 6.6; range 22 to 62 mm), with a standard deviation of 4.6 mm for repeatability and 5.5 mm for reproducibility. The 2D offset for the hips without THA was 40 mm (SD: 7.0; range 26 to 56 mm), and the 3D offset was 43 mm (SD: 6.6; range 28 to 62 mm). For the THA side, the 2D offset was 41 mm (SD: 8.2; range 7 to 57 mm) and the 3D offset was 45 mm (SD: 4.8; range 22 to 61 mm). Comparison of the two protocols shows a significant difference between the 2D and 3D measurements, with the 3D offsets having higher values. Comparison of the sides with and without surgery for each case showed a 5-mm deficit for the offset in 35% of the patients according to the 2D measurement but in only 26% according to the 3D calculation. Conclusions. This study highlights the limitations of 2D measurements of femoral offset on plane X-rays. The reliability of the EOS® 3D models has been previously demonstrated with CT scan reconstructions as a reference. The EOS® imaging system could be an option for obtaining accurate and reliable offset measurements while significantly limiting the patient's exposure to radiation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 137 - 137
1 May 2016
Yabuno K Sawada N Kanazawa M
Full Access

Purpose. Instability following total hip arthroplasty (THA) is an unfortunately frequent and serious problem that requires through evaluation and preoperative planning before surgical intervention. Prevention through optimal index surgery is of great importance, as the management of an unstable THA is challenging even for an experienced joints surgeon. However, even after well-planned surgery, a significant incidence of recurrent instability still exists. As you know Sir John Charnley is one of the first orthopaedic surgeons to address the issue of soft-tissue tensioning (STT) in the THA. Moreover leg-length discrepancy (LLD) after THA can pose a substantial problem for the orthopaedic surgeon. Such discrepancy has been associated with complications including nerve palsy, low back pain, and abnormal gait. The objective of this study is to assess hip instability of three different FOs in same patient undergoing THA during an operation. Methods. We performed 70 patients who had undergone unilateral THA using CT based navigation system at a single institution for advanced osteoarthoritis from May 2013 to May 2014. We used postero-lateral approach in all patients. After cup and stem implantation, we assessed soft tissue tensioning in THA during operation. Trial necks were categorized into one of three groups: standard femoral offset (sFO), high femoral offset (hFO, +4mm compared to sFO) and extensive high femoral offset (ehFO, +8 mm compared to sFO). We measured distance of lift-off about each of three femoral necks using CT based navigation system and a force gauge with hip flexed at 0 degrees and 30 degrees under a traction of lower extremity. Traction force was 40% of body weight. Results. Forty patients had leg length restored to within +/− 5mm of the contralateral side by post-operative CT analysis. We examined these patients. Traction force was 214±41.1Nm. The distances of lift-off were 8.8±4.5mm (sFO), 7.4±4.1mm (eFO), 5.1±3.9mm (ehFO) with 0 degrees hip flexion and neutral abduction(Abd) / adduction(Add) and neutral internal rotation(IR)/external rotation(ER). The distance of lift-off were 11.5±5.9mm (sFO), 10.5±5.5mm (eFO),ã��9.1±5.9mm (ehFO) with 30 degrees hip flexion and neutral Abd / Add and neutral IR/ER. Significant difference was observed between 0 degrees hip flexion and 30 degrees hip flexion on each FO (p<0.05). On changing the distance of lift-off, hFO to ehFO (2.2±1.6mm) was more stable than sFO to hFO (1.4±1.7mm)with 0degrees hip flexion.(p<0.05). On the other hands, hFO to ehFO (1.4±1.6mm) was more stable than sFO to hFO (1.0±1.3mm) with 30 degrees hip flexion. However, we did not find significant difference (p=0.18). Conclusion. Hip instability was found at 30 degrees hip flexion more than at 0 degrees hip flexion. We found that changing from eFO to ehFO can lead to more stability improvement of soft tissue tensioning than sFO to eFO, especially at 0 degrees hip flexion


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 202 - 202
1 Mar 2003
Brick M McCowan S
Full Access

Surgeons are becoming increasingly aware of the importance of matching a patient’s native offset during hip arthroplasty. During the course of a previous study investigating proximal femoral geometry in New Zea-landers it was noted that accurately measuring the femoral offset of a hip arthroplasty patient by traditional methods is difficult and inaccurate. The relationship of various surface parameters were studied to find a simple and reliable method for the surgeon. Eighteen cadaver femora were skeletalised and the offset was measured using a standardised radiological technique. The femoral neck was then sectioned from a point 1–2 cm above the lesser trochanter to the base of the trochanteric fossa. The femoral head was sectioned in the coronal plane and the centre of the head located with concentric circles. The distance from the centre of the head to the most lateral spike of bone was measured. This measure was compared to the radiological offset. Offset correlated closely with the measurement from the centre of rotation to the most lateral spike of bone provided the neck cut extends to the base of the tro-chanteric fossa. Eleven of eighteen measurements were within 2mm of true offset and fifteen were within 3mm. A simple intra-operative technique taking no longer than one or two minutes and requiring no special equipment has been devised to allow the surgeon to accurately estimate the patients femoral offset