Objectives. Pseudotumours (abnormal peri-prosthetic soft-tissue reactions)
following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have
been associated with elevated metal ion levels, suggesting that
excessive wear may occur due to
Metal-on-metal (MOM) and ceramic-on-metal (COM) studies in total hip arthroplasty (THA) documented adverse wear termed “edge loading”. Laboratory simulations necessitated cups steeply inclined to produce edge- loading, whereby cup rims could attenuate the normal wear patterns. Size of cup wear-pattern was therefore key in defining
Background. Many factors contribute to the occurrence of
Introduction:
Introduction: Metal on metal hip resurfacing arthroplasty-induced pseudotumours are a serious complication, which occur in 4% of patients who undergo this procedure. The aim of this study was to measure the 3D in vivo wear on the surface of resurfacing components revised for pseudotumour, compared to a control group. Method: Thirty-nine hip resurfacing implants were examined; these were sourced from our institutions prosthesis retrieval bank. They were divided into two groups; 22 patients with a clinical and histopathological diagnosis of pseudotumour and 17 controls. Patient demographics and time to revision were known. Three dimensional contactless metrology (Redlux™ Ltd) was used to scan the surface of the femoral and acetabular components, to a resolution of 20 nanometers. The location, depth and area of the wear scar was determined for each component. Volumetric wear was determined, along with the presence of absence of
Introduction: Pseudotumours (soft-tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have been associated with elevated serum and hip aspirate metal ion levels, suggesting that pseudotumours occur when there is increased wear. This study aimed to quantify in vivo wear of implants revised for pseudotumours and a control group of implants revised for other reasons of failure. Methods: A total of 30 contemporary MoMHRA implants in two groups were investigated in this Institutional Review Board approved study:. 8 MoMHRA implants revised due to pseudotumour;. 22 MoMHRA implants revised due to other reasons of failure (femoral neck fracture and infection). The linear wear of retrieved implants was measured using a Taylor-Hobson Roundness machine. The average linear wear rate was defined as the maximum linear wear depth divided by the duration of the implant in vivo. Results: In comparison with the non-pseudotumour implant group, the pseudotumour implant group was associated with:. significantly higher median linear wear rate of the femoral component: 8.1um/year (range 2.75–25.4um/year) vs. 1.79um/year (range 0.82–4.15um/year), p=0.002; and. significantly higher median linear wear rate of the acetabular component: 7.36um/year (range1.61–24.9um/year) vs. 1.28um/year (range 0.18–3.33um/year), p=0.001. Similarly, differences were also measured in absolute wear values. The median absolute linear wear was significantly higher in the pseudotumour implant group:. 21.05um (range 2.74–164.80um) vs. 4.44um (range 1.50–8.80um) for the femoral component, p=0.005; and. 14.87um (range 1.93–161.68um) vs. 2.51um (range 0.23–6.04um) for the acetabular component, p=0.008. Wear on the acetabular cup components in the pseudotumour group always involved the edge, indicating
Pseudotumours (soft-tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have been associated with elevated serum and hip aspirate metal ion levels, suggesting that pseudotumours occur when there is increased wear. This study aimed to quantify the wear of implants revised for pseudotumours and a control group of implants revised for other reasons of failure. A total of 30 contemporary MoMHRA implants in two groups were investigated: (1) 8 MoMHRA implants revised due to pseudotumour; (2) 22 MoMHRA implants revised due to other reasons of failure. The linear wear of retrieved implants was measured using a Taylor-Hobson Roundness machine. The average linear wear rate was defined as the maximum linear wear depth divided by the duration of the implant in vivo. In comparison with the non-pseudotumour implant group, the pseudotumour implant group was associated with: (1) significantly higher median linear wear rate of the femoral component: 8.1 um/year (range 2.75-25.4 um/year) vs. 1.97 um/year (range 0.82-13.00 um/year), p=0.002; and (2) significantly higher median linear wear rate of the acetabular component: 7.36 um/year (range 1.61-24.9 um/year) vs. 1.28 um/year (range 0.18-3.33 um/year), p=0.001. Wear on the acetabular cup components in the pseudotumour group always involved the edge, indicating
Aims. Acetabular
Introduction. Acetabular cup orientation has been shown to be a factor in
Wear testing of THR has chaperoned generations of improved UHMWPE bearings into wide clinical use. However, previous in vitro testing failed to screen many metal-on-metal hips which failed. This talk tours hip wear testing and associated standards, giving an assortment of THR wear test results from the author's laboratory as examples. Two international hip wear-simulator standards are used: ISO-14242-1 (anatomic configuration) and ISO-14242-3 (orbital-bearing). Both prescribe 5 million (MC) force-motion cycles involving cross-shear synchronized with compression simulating walking gate of ideally aligned THRs. ISO-14242-1 imposes flexion (flex), abduction-adduction (ad-ab) and internal-external (IE) rotations independently and simultaneously. An orbital-bearing simulator more simply rotates either a tilted femoral head or acetabular component, switching from flexion-dominated to ad-ab-dominated phases in each cycle with some IE. In the latter, the acetabular component is typically placed below the femoral head to accentuate abrasive conditions, trapping third-body-wear debris. Wear is measured (ISO-14242-2) gravimetrically (or volumetrically in some hard-on-hard bearings). Wear-rate ranges from negligible to >80mg/MC beyond what causes osteolysis. This mode-1 adhesive wear can therefore “discriminate” to screen hip designs-materials in average conditions. Stair-climbing, sitting, squatting and other activities may cause THR
Background. In vivo fluoroscopic studies have proven that femoral head sliding and separation from within the acetabular cup during gait frequently occur for subjects implanted with a total hip arthroplasty. It is hypothesized that these atypical kinematic patterns are due to component malalignments that yield uncharacteristically higher forces on the hip joint that are not present in the native hip. This in vivo joint instability can lead to edge loading, increased stresses, and premature wear on the acetabular component. Objective. The objective of this study was to use forward solution mathematical modeling to theoretically analyze the causes and effects of hip joint instability and edge loading during both swing and stance phase of gait. Methods. The model used for this study simulates the quadriceps muscles, hamstring muscles, gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament and the ischiofemoral, iliofemoral, and pubofemoral hip capsular ligaments. The model was previously validated using telemetric implants and fluoroscopic results from existing implant designs. The model was used to simulate theoretical surgeries where various surgical alignments were implemented and to determine the hip joint stability. Parameters of interest in this study are joint instability and femoral head sliding within the acetabular cup, along with contact area, contact forces, contact stresses, and ligament tension. Results. During swing phase, it was determined that femoral head pistoning is caused by hip capsule laxity resulting from improperly positioned components and reduced joint tension. At the point of maximum velocity of the foot (approximately halfway through), the momentum of the lower leg becomes too great for a lax capsule to properly constrain the hip, leading to the femoral component pistoning outwards. This pistoning motion, leading to separation, is coupled with a decrease in contact area and an impulse-like spike in contact stress (Figure 1). During stance phase, it was determined that femoral head sliding within the acetabular cup is caused by the proprioceptive notion that the human hip wants to rotate about its native, anatomical center. Thus, component shifting yields abnormal forces and torques on the joint, leading to the femoral component sliding within the cup. This phenomenon of sliding yields acetabular
Introduction. Metal-on-metal (MoM) hip resurfacing arthroplasty is a popular choice for young and active patients. However, there are concerns recently regarding soft tissue masses or pseudotumours. The appearance of these complications is thought to be related blood metal ion levels. The level of metal ions in blood is thought to be the result of MoM wear. In the present study the contribution of acetabulum orientation to stress distribution was investigated. Methods. Four subjects with MoM resurfacings and with known blood metal ion levels underwent motion analysis followed by CT scans. The positions of the acetabular (cup) and femoral components were determined the CT data relative to local coordinate systems in the pelvis (PCS) and the femur (FCS). Transformations, calculated from the motion analysis data, between the PCS and FCS gave the position of the cup relative to the femoral component for each frame of captured motion data. Hip reaction forces were taken from published data1. The intersection of hip reaction force with each subject's cup and the increase in inclination required to move the force to the edge of the cup was calculated for 2% intervals during the stance phase of gait. Finite element models representing each subject's cup and femoral components were created and contact stresses were determined for the native cup inclination angle. For each model, the effect of increasing the inclination of the cup, by up to 10°, in 1° increments, was determined. Results and Discussion. The two subjects with high metal ion levels had inclination angles of 60.2° and 53.7° whereas the two with low metal ion levels had inclination angles of 45.6° and 46.5°. The subjects with high metal ion levels required very little increase to their inclination angle to cause the hip reaction force vector to intersect at the edge. The contact stress on the cup increased dramatically when the inclination angle was such that the hip reaction force intersected with the edge. The average increase in contact stress under
Many total knee replacements (TKR) are designed with more conforming articular geometry to increase the femoral contact area and decrease surface stresses. These designs are supported by studies suggesting that implants with coronally flat articular surfaces are vulnerable to medial-lateral lift-off and
In total hip arthroplasty (THA), acetabular cup orientation is critical for avoiding
Introduction and Aims: Dual surface articulation characterises mobile bearing knee (MBK) designs, thereby increasing the potential for polyethylene damage. This hypothesis was investigated for eight, contemporary MBK designs. Method: Both joint simulator and computational evaluations were performed on contemporary MBK systems. As part of an FDA clinical investigation a knee joint simulator was designed that successfully cycled three pairs of a MBK design for five million walking cycles at room temperature under saline conditions. Additionally, a finite element analysis was developed to determine the potential for abrasion, delamination and pitting for eight designs during walking gait. Results: For the MBK simulator evaluation, the mean wear volume was 125mm^3 (range 75–175mm^3). This result is comparable to evaluations performed on fixed bearing designs in contemporary knee simulators utilising bovine serum for lubrication. The surface and subsurface stress distributions measured displayed a wide variation in both magnitude and location. Several of the designs utilised their available articulating interface optimally, lowering the magnitude of the stresses, while others produced
Introduction. Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and
A total hip replacement (THR) patient's spinopelvic mobility might predispose them to an increased risk of impingement, instability and
The pelvis moves in the sagittal plane during functional activity. This can be detrimental to functional cup orientation. Increased pelvic mobility could be a risk factor for instability and
Introduction. The pelvis moves in the sagittal plane during functional activity. These movements can have a detrimental effect on functional cup orientation. The authors previously reported that 17% of total hip replacement (THR) patients have excessive pelvic rotation preoperatively. This increased pelvic rotation could be a risk factor for instability and
Introduction. The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Methodology. Pre-operatively, 90 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair), Fig 1. Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography, Fig 2. Results. The mean standing pelvic tilt was −2.1° ± 7.4°, with a range of −15.2° – 15.3°. Mean supine pelvic tilt was 4.1° ± 5.5°, with a range of −9.7° – 17.9°. Mean pelvic tilt in the flexed seated position was −1.8° ± 14.1°, with a range of −31.8° – 29.1°, Fig 3. The mean absolute change from supine to stand, and stand to flexed seated was 6.9° ± 4.1° and 11.9° ± 7.9° respectively. 86.6% of patients had a more anteriorly tilted pelvis when supine than standing. 52.2% of patients had a more anteriorly tilted pelvis when seated than standing. Conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. Planning and measurement of cup placement in the supine position can lead to large discrepancies in orientation during more functionally relevant postures. As a result of the functional changes in pelvic position, cup orientations during dislocation and