Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims. Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. Methods. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI. Results. We confirmed an interaction between miR-381 and BRD4, and showed that miR-381 overexpression inhibited the expression of BRD4 in DRG cells as well as the apoptosis of DRG cells through WNT5A via activation of Ras homologous A (RhoA)/Rho-kinase activity. Moreover, treatment of MSC-EVs rescued neuron apoptosis and promoted the recovery of SCI through inhibition of the BRD4/WNT5A axis. Conclusion. Taken altogether, miR-381 derived from MSC-EVs can promote the recovery of SCI through BRD4/WNT5A axis, providing a new perspective on SCI treatment. Cite this article: Bone Joint Res 2021;10(5):328–339


Bone & Joint Research
Vol. 10, Issue 8 | Pages 548 - 557
25 Aug 2021
Tao Z Zhou Y Zeng B Yang X Su M

Aims. MicroRNA-183 (miR-183) is known to play important roles in osteoarthritis (OA) pain. The aims of this study were to explore the specific functions of miR-183 in OA pain and to investigate the underlying mechanisms. Methods. Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (CCL2), proinflammatory cytokines (interleukin (IL)-6, IL-1β, and tumour necrosis factor-α (TNF-α)), and pain-related factors (transient receptor potential vanilloid subtype-1 (TRPV1), voltage-gated sodium 1.3, 1.7, and 1.8 (Nav1.3, Nav1.7, and Nav1.8)). Expression of miR-183 in the dorsal root ganglia (DRG) of mice was evaluated by in situ hybridization. TGFα, CCL2, and C-C chemokine receptor type 2 (CCR2) levels were examined by immunoblot analysis and interaction between miR-183 and TGFα, determined by luciferase reporter assay. The extent of pain in mice was measured using a behavioural assay, and OA severity assessed by Safranin O and Fast Green staining. Immunofluorescent staining was conducted to examine the infiltration of macrophages in mouse DRG. Results. miR-183 was downregulated in tissue samples from patients and mice with OA. In DMM mice, overexpression of miR-183 inhibited the expression of proinflammatory cytokines (IL-6, IL-1β, TNF-α) and pain-related factors (TRPV1, Nav1.3, Nav1.7, Nav1.8) in DRG. OA pain was relieved by miR-183-mediated inhibition of macrophage infiltration, and dual luciferase reporter assay demonstrated that miR-183 directly targeted TGFα. Conclusion. Our data demonstrate that miR-183 can ameliorate OA pain by inhibiting the TGFα-CCL2/CCR2 signalling axis, providing an excellent therapeutic target for OA treatment. Cite this article: Bone Joint Res 2021;10(8):548–557


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 20 - 20
2 Jan 2024
Novais E Brown E Ottone O Tran V Lepore A Risbud M
Full Access

Despite the clinical relevance of back pain and intervertebral disc herniation, the lack of reliable models has strained their molecular understanding. We characterized the lumbar spinal phenotype of C57BL/6 and SM/J mice during aging. Interestingly, old SM/J lumbar discs evidenced accelerated degeneration, associated with high rates of disc herniation. SM/J AF's and degenerative human's AF transcriptomic profiles showed altered immune cell, inflammation, and p53 pathways. Old SM/J mice presented increased neuronal markers in herniated discs, thicker subchondral bone, and higher sensitization to pain. Dorsal root ganglia transcriptomic studies and spinal cord analysis exhibited increased pain and neuroinflammatory markers associated with altered extracellular matrix regulation. Immune system single-cell and tissue level analysis showed distinctive T-cell and B-cell modulation and negative correlation between mechanical allodynia and INF-α, IL-1β, IL2, and IL4, respectively. This study underscores the multisystemic network behind back pain and highlights the role of genetic background and the immune system in disc herniation disease. Acknowledgments: This study is supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01AR055655, R01AR064733, R01AR074813 to MVR


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 2 - 2
1 Apr 2018
Yifeng Z
Full Access

Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-a (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown in vivo of the CGRP-receptor-encoding genes Calcrl or Ramp1 substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an elevation of extracellular magnesium induces magnesium transporter 1 (MAGT1)-dependent and transient receptor potential cation channel, subfamily M, member 7 (TRPM7)-dependent magnesium entry, as well as an increase in intracellular adenosine triphosphate (ATP) and the accumulation of terminal synaptic vesicles in isolated rat DRG neurons. In isolated rat periosteum-derived stem cells, CGRP induces CALCRL- and RAMP1-dependent activation of cAMP-responsive element binding protein 1 (CREB1) and SP7 (also known as osterix), and thus enhances osteogenic differentiation of these stem cells. Furthermore, we have developed an innovative, magnesium-containing intramedullary nail that facilitates femur fracture repair in rats with ovariectomy-induced osteoporosis. Taken together, these findings reveal a previously undefined role of magnesium in promoting CGRP-mediated osteogenic differentiation, which suggests the therapeutic potential of this ion in orthopedics


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 598 - 598
1 Oct 2010
Pap K Domaraczki O Kozsurek M Pantò T Puskár Z Rahmeh H Szöke G
Full Access

Graded limb lengthening by callus distraction is a widely used surgical procedure to correct tubular bone deformities and can result in dramatic functional improvements in children. We used a model of tibial lengthening in rabbits to study the postoperative pain pattern during limb lengthening and morphological changes in the dorsal root ganglia (DRG), including alteration of substance P (SP) expression. Four groups of animals (naïve; OG: osteotomised only; SDG/FDG: slow/fast distraction with 1mm/3mm lengthening a day) were used. Signs of increasing postoperative pain were detected till the10th postoperative day in all groups; then it decreased in OG, whereas remained higher in SDG/FDG until the distraction finished. This suggests that pain response is based mainly on surgical trauma until the 10th day: the lengthening extended its duration and increased its intensity. The only morphological change observed in the DRGs was the presence of large vacuoles in large neurons of all operated groups. Although osteotomy was conducted in OG/SDG/FDG groups, significant de novo SP-expression in the large DRG cells appeared only in OG and significant decrease in the number of SP-immunoreactive small DRG neurons was detected solely in the SDG/FDG groups. Faster and larger distraction resulted in more severe pain sensation and lowered further the number of SP-positive small cells. Our data suggest that down-regulation of SP in the small cells in lengthened animals is associated with the stretch nerve injury, whereas de novo expression of the peptide in the large cells in OG is likely to correspond to the undergoing regeneration


Bone & Joint Research
Vol. 10, Issue 5 | Pages 307 - 309
3 May 2021
Eitner A Wildemann B


Bone & Joint 360
Vol. 3, Issue 6 | Pages 21 - 23
1 Dec 2014

The December 2014 Spine Roundup360 looks at: surgeon outcomes;

complications and scoliosis surgery; is sequestrectomy enough in lumbar disc prolapse?; predicting outcomes in lumbar disc herniation; sympathectomy has a direct effect on the dorsal root ganglion; and distal extensions of fusion in adolescent idiopathic scoliosis.