Introduction. Surgical reconstruction of deformed Charcot feet carries high risk of non-union, metalwork failure and deformity recurrence. The primary aim of this study was to identify the factors contributing to these complications following hindfoot
Introduction. Charcot neuroarthropathy is a debilitating condition that frequently leads to skeletal instability, and has an increased risk of ulceration leading to infection and amputation. However, surgical reconstruction may offer limb salvage and restauration of an ulcer-free, plantigrade stable foot for functional weight-bearing. We report on our case series according to a prospective protocol and analyse factors leading to a favourable outcome. Methods. We report a prospective follow-up of 62 patients undergoing
The mid foot joints are usually the first to be affected in
In foot and ankle surgery incorrect placement of implants, or inaccuracy in fracture reduction may remain undiscovered with the use of conventional C-arm fluoroscopy. These imperfections are often only recognized on postoperative computer tomography scans. The apparition of three dimensional (3D) mobile Imaging system has allowed to provide an intraoperative control of fracture reduction and implant placement. Three dimensional computer assisted surgery (CAS) has proven to improve accuracy in spine and pelvic surgery. We hypothesized that 3D-based CAS could improve accuracy in foot and ankle surgery. The purpose of our study was to evaluate the feasibility and utility of a multi-dimensional surgical imaging platform with intra-operative three dimensional imaging and/or CAS in a broad array of foot and ankle traumatic and orthopaedic surgery. Cohort study of patients where the 3D mobile imaging system was used for intraoperative 3D imaging or 3D-based CAS in foot and ankle surgery. The imaging system used was the O-arm Surgical Imaging System and the navigation system was the Medtronic's StealthStation. Surgical procedures were performed according to standard protocols. In case of fractures, image acquisition was performed after reduction of the fracture. In cases of 3D-based CAS, image acquisition was performed at the surgical step before implants placement. At the end of the operations, an intraoperative 3D scan was made. We used the O-arm Surgical Imaging system in 11 patients: intraoperative 3D scans were performed in 3 cases of percutaneus fixation of distal tibio-fibular syndesmotic disruptions; in 2 of the cases, revision of reduction and/or implant placement were needed after the intraoperative 3D scan. Three dimensional CAS was used in 10 cases: 2 open reduction and internal fixation (ORIF) of the calcaneum, 1 subtalar fusion, 2 ankle arthrodesis, 1 retrograde drilling of an osteochondral lesion of the talus, 1