Aims. Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing.
Objectives. Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis. Results. The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). Conclusions. This new biphasic bone substitute containing antibiotics provides safe prevention of bone infections in a range of clinical situations. The in vitro test method predicts the in vivo performance and makes it a reliable tool in the development of future antibiotic-eluting bone-regenerating materials. Cite this article: M. Stravinskas, P. Horstmann, J. Ferguson, W. Hettwer, M. Nilsson, S. Tarasevicius, M. M. Petersen, M. A. McNally, L. Lidgren. Pharmacokinetics of gentamicin eluted from a regenerating
Introduction. Today, Uganda has the second highest rate of road accidents in Africa and the world after Ethiopia. According to the World Health Organization's Global Status Report on Road Safety 2013, Uganda is named among countries with alarmingly high road accident rates. If such trend of traffic accidents continues to increase, the health losses from traffic injuries may be ranked as the second to HIV/AIDS by 2020. These road traffic accidents often result in terrible open injuries. Open fractures are complex injuries of bone and soft tissue. They are orthopedic emergencies due to risk of infection secondary to contamination and compromised soft tissues and sometimes vascular supply and associated healing problems. Any wound occurring on the same limb should be suspected as result of open fracture until proven otherwise. The principles of management of open fracture are initial evaluation and exclusion of life threatening injuries, prevention of infection, healing of fracture and restoration of function to injured extremity. Because of the poor hygienic circumstances and the high rate of cross-infection due to the crowded patient-wards, the risk of getting a post-operative infection is relatively high. Osteoset-T® (Wright Medical) is a medical grade calcium sulfate
To document early in-vivo concentrations of gentamicin in plasma and drain fluid after bone defect reconstruction using a gentamicin-eluting
Aim. Bone and implant-associated infections caused by microorganisms that grow in biofilm are difficult to treat because of persistence and recurrence. Systemic administration of antibiotics is often inefficient because the poor vascularization of the site of infection. This issue has led to the development of biomaterials capable to locally deliver high doses of therapeutic agents to the injured bone with minimal systemic effects. In this context, calcium sulphate/hydroxyapatite (CS/HA)
Aim. This study describes and correlates the radiographic and histologic changes which develop in a Gentamicin-eluting synthetic
Bioactive glasses (BAGs) are bone substitutes with bone bonding, angiogenesis promoting and antibacterial properties. The bioactive process leading to bone bonding has been described as a sequence of reactions in the glass and at its surface. Implantation of the glass is followed by a rapid exchange of Na+ in the glass with H+ and H3O+ from the surrounding tissue, leading to the formation of silanol (SiOH) groups at the glass surface. Due to migration of Ca2+ and PO43− groups to the surface and cystallization, a CaO-P2O5 hydroxyapatite (HA) layer is formed on top of the Si-rich layer. Finally, cell interactions with the HA layer subsequently initiate the bone forming pathway. The rapid increase in pH and the subsequent osmotic effect caused by dissolution of the glass have been suggested to partly explain the antibacterial properties observed for BAGs. Comparing bactericidal effects of different BAGs, BAG-S53P4 has been shown to be the most effective, with the fastest killing or growth inhibitory effect. This antibacterial effect has been observed in vitro for all pathogens tested, including the most important aerobic and anaerobic pathogens, as well as very resistant bacteria. In a multicentre study in 2007–2009, BAG-S53P4 was used as
To report our experience with the use of local antibiotic co-delivery with a synthetic
An experimental study was performed in order to investigate methods of preparation and mechanical properties of a potential
Aim. To investigate the antimicrobial activity of a gentamicin-loaded
To assess the performance of calcium sulphate pellets as a
We performed a prospective audit to assess radiological and clinical sequelae of using injectable calcium sulphate in the management of distal radial fractures. All patients in a 4-month period who were treated with injectable calcium sulphate for distal radial fracture were included in the audit. Initial data was collected on demographics; AO classification and degree of deformity; method of fixation and surgical complications. Follow up consisted of clinical and radiological assessment of fracture healing at standard fracture clinic intervals with a final assessment of subjective functional recovery. 16 patients were included in the audit, all of whom were followed up for a minimum of 8 weeks. We observed a low incidence of secondary displacement, and did not observe the problem of increased pain and erythema that has been observed with other
Introduction: Total hip arthroplasty is one of the most frequently performed surgical procedures, with implants usually giving over 90% survival at 10 years. The failure rate is primarily due to aseptic loosening often associated with progressive bone stock loss. Impaction of cancellous morselized allografts with cement can be used for revision total hip arthroplasty in such cases. There is increasing interest in the use of synthetic
Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation.Materials and methods:
Endoprosthetic reconstruction for pathologic acetabular fractures is associated with a high risk of periprosthetic joint infection. In this setting, bone defect reconstruction utilising co-delivery of a synthetic bone substitute with an antibiotic, is an attractive treatment option from both, therapeutic and prophylactic perspective. We wished to address some concerns that remain regarding the possible presence of potentially wear inducing particles in the periprosthetic joint space subsequent to this procedure. We analysed a drain fluid sample from an endoprosthetic reconstruction of a pathologic acetabular fracture with implantation of a gentamicin eluting, biphasic
Aims: The aim of the study is to evaluate the clinical application in veterinary orthopedics of the bone stromal cells loaded on three-dimensional resorbable osteogenic scaffolds. Methods: On the basis of the results obtained after an experimental study on 54 adult sheep (data in process), the Authors have carried out a clinical study on 9 dogs of different breed, age,sized with the different orthopaedic lesion associated to large bone defects (from 2 to 4,8 cm) (bone cyst of glenoid rime, non-union of the tibia and of the femur, osteosarcoma of the radio and the proximal humerus, lenghtening of the radius, bone large defect of the distal radius).With the local anesthesia performed with 2% lidocaine the marrow samples were collected from the iliac crest two hours before the surgery. The bone marrow nucleated cells were then isolated from the bone marrow by gradient centrifugation and loaded on the scaffold on biomaterial, which size and shape was defined before performing the surgery. The cells separated were added with some drops of thrombin. The material used for the study was Osteostim Skelite resorbable
Porous collagen-glycosaminoglycan (Col/GAG) scaffolds have previously been used clinically as regeneration templates for peripheral nerves and skin[1]. For defects involving even minimal load-bearing applications however, these scaffolds do not possess the required stiffness. Calcium phosphates (CaPs) are often used as bone-graft substitutes due to their biocompatibility and direct bone-bonding ability. While CaPs have sufficient stiffness for bone-defect applications, unlike Col/GAG they lack elasticity and are very brittle. Combining these two materials produces a composite with enhanced material properties and chemical similarity to natural bone. The addition of CaP nanocrystallites into the Col/GAG matrix produces a 3-dimensional structure that maintains its structural integrity even when wet. In this study, the in vivo performance of mineralised Col/GAG composites was evaluated by implantation into a six-week ovine bone-defect model. Four different materials were implanted; Col/GAG alone, Col/GAG with octacalcium phosphate, Col/GAG with hydroxyapatite and Col/GAG with brushite. Implants with a diameter of 9mm and length of 9mm, were placed bilaterally into the distal femoral condyle of the hind legs of thirteen sheep. This site was selected due to the large volume of load-bearing cancellous bone. Cancellous autograft was harvested from the tibial tuberosity and placed in the defect sites of two sheep as a positive control. All animals were sacrificed after 6 weeks and tissue containing the implants was prepared for histological evaluation. Image analysis of Von Kossa stained sections showed that all mineralised Col/GAG implants had significantly more bone in the implant site than unmineralised Col/GAG but were not significantly different between CaPs. Interestingly, new bone formation often followed the structure of the porous material struts which acted as a template. The defect containing the autograft contained the greatest amount of new bone. The inclusion of mineral substantially improves the osteoconductivity of Col/GAG. No significant difference between the different calcium phosphates was seen. Whilst these materials did not stimulate bone formation to the same extent as autograft, many bone graft procedures are carried out with allograft which performs less favourably.Conclusions
A clinical investigation into a new bone void filler is giving
first data on systemic and local exposure to the anti-infective
substance after implantation. A total of 20 patients with post-traumatic/post-operative bone
infections were enrolled in this open-label, prospective study.
After radical surgical debridement, the bone cavity was filled with
this material. The 21-day hospitalisation phase included determination
of gentamicin concentrations in plasma, urine and wound exudate, assessment
of wound healing, infection parameters, implant resorption, laboratory
parameters, and adverse event monitoring. The follow-up period was
six months. Objective
Method
Restoration of bone stock is the single greatest challenge facing the revision hip surgeon today. This has been dealt with by means of impaction grafting with morsellised allograft from donor femoral heads. Alternatives to allograft have been sought. This study investigates the use of a porous biphasic ceramic in impaction grafting of the femur. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed by measuring peak vertical reaction forces. Changes in bone mineral density were measured by DEXA scanning. Loosening and subsidence were assessed radiographically and by examination of explanted specimens. All outcome measures showed no statistically significant difference between the four groups after eighteen months of full function.
The purpose of the study was to assess the incorporation of defatted, and deproteinated bovine cancellous bone in a sheep bone graft model. Cylindrical defects were created in the femoral condyles of 12 sheep using custom-made trephines. The defect was filled with a cylinder of prepared bovine bone. The removed cylinder of bone was implanted into a defect created in the opposite femoral condlyle. Fluorochrome bone labels were administered over an 8-week period and the sheep sacrificed at 10 weeks. Undecalcified thin bone sections were viewed with a fluorescent microscope. ln one sheep there was a technical problem leading to unsatisfactory histology. All other sheep showed similar histology. The autograft incorporated rapidly with the graft showing a rim of reactive bone and the graft itself showing rapid laying down of new bone on its surface. The xenograft showed a similar reactive rim of new bone with deposition of new bone throughout the graft and resorption of the graft material. This study demonstrates that specially prepared bovine cancellous bone can act as a scaffold for the depostion of new bone in a sheep model. The role of this material in humans is to be evaluated.