The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.Objectives
Methods
Introduction and Aims: Although skeletal muscles have remarkable potential for adaptation, the amount of muscle length increase during gradual limb lengthening is always less than the amount of bone lengthening. The purpose of this study was to analyse gene expression in skeletal muscle undergoing adaptation to limb lengthening. Method: Ten adult goats were randomly divided into two groups of five animals. Group 1 underwent 20% (43–47mm) standard Ilizarov tibial lengthening and group 2 served as un-operated control. Muscle tissues from proximal myotendenous junctions of Peroneus Longus were harvested from the lengthened limb in the distraction group and corresponding limb in the control group and immediately snap frozen in liquid nitrogen. To screen for genes potentially associated with sarcomerogenesis, microarray technology was employed.
Introduction: A number of clinical and experimental studies suggest that an intact nervous system is essential for normal fracture healing. In the present study, we analysed the occurrence of regenerating and mature nerve fibres over time in fracture callus. Using antibodies against neuronal proteins specific for nerve regeneration (growth associated protein – GAP-43) and nerve maturity (protein gene product – PGP 9.5) it is possible to demonstrate regeneration and end differentiation of nerves by immunohistochemistry. Methods: Twelve male Sprague Dawley rats, weighing 230–290 g were used. The right tibias were fractured under HypnormÒ anaesthesia and fixed with a 17-G cannula needle in the medullary canal. The left un-fractured tibia served as an internal control. X-rays was used to monitor progress of fracture healing. Three rats were killed at 3 days, 1, 2 and 3 weeks post-fracture and right and left tibia were prepared for immunohistochemistry. The tissue sections (15 mm thick) were incubated with antiserum to GAP-43 and then with biotinylated antibodies. Cy2-conjugated avidin was used for the fluorescent staining. For double staining, after the staining with first antibody, the sections were incubated with avidin blocking solution followed by
The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.Objectives
Methods