Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 391 - 391
1 Jul 2008
Mills L Noble B Fenwick S Simpson H
Full Access

Introduction: Atrophic nonunion is a well recognised complication of long bone fractures. Clinical trials show that BMP-2 accelerates healing and reduces nonunion in open tibial fractures. We are interested in a natural small molecule that has been previously demonstrated to stimulate angiogenesis in vivo. Our aim is to assess the two treatments in the prevention of nonunion. The small animal model we used is a non-critical size defect of the tibia deprived it of its blood supply by surgical stripping of the periosteum and curetting of the local endosteum thus closely reflecting the clinical situation. The outcomes were measured by radiographic assessment and histology. Methods: Wistar rats were treated with either the angiogenic molecule (0.1% or 0.003%), BMP-2 or vehicle alone (PBS) soaked in a type I collagen sponge. All animals underwent a 2mm osteotomy, stripping of the periosteum and endosteum proximally and distally for the length of the diameter of the tibia. Fluorescent markers were injected at 2 weekly intervals. The rats were sacrificed at 8 weeks. Both tibiae were disarticulated; fixator and soft tissues were removed and AP and lateral X-rays were taken. Subjective assessment of the healing on X-ray was carried out in two ways; using a radiographic scoring system and by grey scale analysis. The samples were embedded, sectioned and stained for new bone formation. Results: Bridging or potential to bridge was seen in a number of animals on x-ray. Bridging or potential to bridge was judged to be present in 72.22% of the BMP-2 group and 66.67% of the high dose group compared to 22.22% of the control group. Histological analysis is being performed to confirm these findings. Discussion: Atrophic nonunion is a serious clinical complication, unfortunately BMP-2 is a highly costly treatment option and therefore alternative molecular therapies are much sought after. We describe here an angiogenic molecule has some potential in preventing formation of nonunion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 83 - 83
1 Apr 2013
Sato K Watanabe Y Abe S Harada N Yamanaka K Sakai Y Kaneko T Matsushita T
Full Access

Introduction. what size of defect is optimal for creating an atrophic nonunion animal model has not been well defined. Our aim in this study was to establish a clinically relevant model of atrophic nonunion in rat femur by creation of a bone defect to research fracture healing and nonunion. Materials and methods. We used 30 male Fischer 344 rats (aged 10–11 weeks), which were equally divided into six groups. The segmental bone defects to a single femur in each rat were performed by double transverse osteotomy, and different sized defects were created by group for each group (1 mm, 2 mm, 3 mm, 4 mm, 5 mm and 6 mm). The defects were measured and maintained strictly by using an original external fixator. The periosteum for each defect was stripped both proximally and distally. Thereafter, these models were evaluated by radiology and histology. Radiographs were taken at baseline and at intervals of two weeks over a period of 8 weeks. Atrophic nonunion was defined as a lack of continuity and atrophy of both defect ends radiologically and histologically at eight weeks. Results. In the 1 mm defect group, all defects had healed. In the 2 mm group, one-fifth remained atrophic nonunion. In the 3 mm group, three-fifths had atrophic nonunion, and all of the defects of groups of 4 mm and over were atrophic nonunion. Conclusion. This study showed that we were able to predictively produce an atrophic nonunion animal model by creating defects of at least 4 mm in the Fischer 344 rat femur


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 55 - 55
1 Jul 2020
Jalal MMK Wallace R Simpson H
Full Access

Many pre-clinical models of atrophic non-union do not reflect the clinical scenario, some create a critical size defect, or involve cauterization of the tissue which is uncommonly seen in patients. Atrophic non-union is usually developed following high energy trauma leading to periosteal stripping. The most recent reliable model with these aspects involves creating a non-critical gap of 1mm with periosteal and endosteal stripping. However, this method uses an external fixator for fracture fixation, whereas intramedullary nailing is the standard fixation device for long bone fractures.

OBJECTIVES

To establish a clinically relevant model of atrophic non-union using intramedullary nail and (1) ex vivo and in vivo validation and characterization of this model, (2) establishing a standardized method for leg positioning for a reliable x-ray imaging.

Ex vivo evaluation: 40 rat's cadavers (adult male 5–6 months old), were divided into five groups (n=8 in each): the first group was fixed with 20G intramedullary nail, the second group with 18G nail, the third group with 4-hole plate, the fourth group with 6-hole plate, and the fifth group with an external fixator. Tibiae were harvested by leg disarticulation from the knee and ankle joints. Each group was then subdivided into two subgroups for mechanical testing: one for axial loading (n=4) and one for 4-point bending (n=4) using Zwick/Roell® machine. Statistical analysis was carried out by ANOVA with a fisher post-hoc comparison between groups. A p-value less than 0.05 was considered statistically significant.

To maintain the non-critical gap, a spacer was inserted in the gap, the design was refined to minimize the effect on the healing surface area. In vivo evaluation was done to validate and characterize the model. Here, a 1 mm gap was created with periosteal and endosteal stripping to induce non-union. The fracture was then fixed by a hypodermic needle.

A proper x-ray technique must show fibula in both views. Therefore, a leg holder was used to hold the knee and ankle joints in 90º flexion and the foot was placed in a perpendicular direction with the x-ray film. Lateral view was taken with the foot parallel to the x-ray film.

Ex vivo: axial load stiffness data revealed that intramedullary nails are significantly stronger and stiffer than other devices. Bending load to failure showed that 18G nails are significantly stronger than 20G, thus it is used for the in vivo experiments.

In vivo: final iteration revealed 3/3 non-union, and in controls with the periosteum and endosteum intact but with the 1mm non-critical gap, it progressed to 3/3 union.

X-ray positioning: A-P view in supine position, there was an unavoidable degree of external rotation in the lower limb, thus the lower part of the fibula appeared behind the tibia. To overcome this, a P-A view of the leg was performed with the body in prone rather, this arrangement allowed both upper and lower parts of the fibula to appear clearly in both views.

We report a novel model of atrophic non-union, the surgical procedure is relatively simple and the model is reproducible.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 8 - 8
1 Jan 2019
Jalal M Simpson H Wallace R Peault B
Full Access

In atrophic non-union models, a minimally invasive technique is used to deliver stem cells into the fracture site via percutaneous injection. This technique is significantly affected by a backflow leakage and the net number of cells might be reduced. The Z-track method is a technique used in clinical practice for intramuscular injections to prevent backflow leakage.

We evaluated the potential of the Z-track injection technique for preventing cell loss in non-union models by determining the behaviour of observable marker fluids. Firstly, toluene blue stain was used as an injection material to allow visual detection of its distribution. Rat's cadaver legs were used and tibias were kept unbroken to ensure intact skin and overlying soft tissue. Technique includes pulling the skin over the shin of tibia towards the ankle and injection of the dye around the mid-shaft. The needle was then partially pulled back, the skin was returned to its normal position and a complete extraction of the needle was followed. Secondly, a mixture of contrast material and toluene blue was used to allow direct visual and radiological detection of the injected material into the fracture site. Ante-grade nailing of tibia via tibial tuberosity was carried out followed by a 3 point closed fracture. Injection was performed into the fracture gap similarly to the steps above. X-rays were taken to visualise the location and distribution of the injected material.

Observation revealed no blue stain could be detected over the skin, X -rays revealed that the radiopaque dye remained around the tibia with no escape of the material into the superficial layers or onto the skin surface. Therefore, the number of cells delivered and maintained at a target site could be increased by the Z-track method and therefore, the therapeutic benefit of stem cell injections could be optimised with this simple technique.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 17 - 17
1 Jan 2019
Jalal M Simpson H Wallace R
Full Access

Appropriate in vivo models can be used to understand atrophic non-union pathophysiology. In these models, X-ray assessment is essential and a reliable good quality images are vital in order to detect any hidden callus formation or deficiency. However, the radiographic results are often variable and highly dependent on rotation and positioning from the detector/film. Therefore, standardised A-P and lateral x-ray views are essential for providing a full radiological picture and for reliably assessing the degree of fracture union.

We established and evaluated a method for standardised imaging of the lower limb and for reliably obtaining two perpendicular views (e.g. true A-P and true lateral views). The normal position of fibula in murine models is posterolateral to the tibia, therefore, a proper technique must show fibula in both views. In order to obtain the correct position, the knee joint and ankle joints were flexed to 90 degrees and the foot was placed in a perpendicular direction with the x-ray film. To achieve this, a leg holder was made and used to hold the foot and the knee while the body was in the supine position. Lateral views were obtained by putting the foot parallel to the x-ray film. Adult Wister rat cadavers were used and serial x-rays were taken.

A-P view in supine position showed the upper part of the fibula clearly, however, there was an unavoidable degree of external rotation in the whole lower limb, and the lower part of the fibula appeared behind the tibia. Therefore, a true A-P view whilst the body was in the supine position was difficult. To overcome this, a P-A view of the leg was performed with the body prone position, this allowed both upper and lower parts of the fibula to appear clearly in both views. This method provides two true perpendicular views (P-A and lateral) and helped to optimise radiological assessment.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 119 - 119
1 Nov 2018
Jalal M Wallace R Simpson H
Full Access

There is a growing trend towards using pre-clinical models of atrophic non-union. This study investigated different fixation devices, by comparing the mechanical stability at the fracture site of tibia bone fixed by either intramedullary nail, compression plate or external fixator. 40 tibias from adult male Wistar rats' cadavers were osteotomised at the mid-shaft and a gap of 1 mm was created and maintained at the fracture site to simulate criteria of atrophic non-union model. These were divided into five groups (n=8 in each): the first group was fixed with 20G intramedullary nail, the second group with 18G nail, the third group with 4-hole plate, the fourth group with 6-hole plate, and the fifth group with external fixator. Tibia was harvested by leg disarticulation from the knee and ankle joints, the soft tissues were carefully removed from the leg, and tibias were kept hydrated throughout the experiment. Each group was then subdivided into two subgroups for mechanical testing: one for axial loading (n=4) and one for 4-point bending (n=4). Statistical analysis was carried out by ANOVA with a fisher post-hoc comparison between groups. A p-value less than 0.05 was considered statistically significant. Axial load to failure data and stiffness data revealed that intramedullary nails are significantly stronger and stiffer than other devices, however there was no statistically significant difference axially between the nail thicknesses. In bending, load to failure revealed that 18G nails are significantly stronger than 20G. We concluded that 18G nail is superior to the other fixation devices, therefore it has been used for in-vivo experiments to create a novel model of atrophic non-union with stable fixation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_7 | Pages 5 - 5
1 May 2021
Jalal MMK Wallace RJ Peault B Simpson AHRW
Full Access

The role of mesenchymal stem cells (MSCs) in enhancing healing process has been examined with allogeneic and xenogeneic cells in transplantation models. However, certain factors might limit the use of allogeneic cells in clinical practice, (e.g. disease transmission, ethical issues and patient acceptance). Adipose tissue represents an abundant source for autologous cells. The aim of this study was to evaluate adipose-derived autologous cells for preventing non-union.

Adults male Wistar rats (n=5) underwent a previously published surgical procedure known to result in non-union if no treatment is given. This consisted of a mid-shaft tibial osteotomy with peri/endosteal stripping stabilised by intramedullary nail fixation with a 1mm gap maintained by a spacer. During the same operation, ipsilateral inguinal subcutaneous fat was harvested and processed for cell isolation. After three weeks in culture, the cell number reached 5×106 and were injected into the fracture site.

At the end of the experiment, all tibias (injected with autologous fat-MSCs) developed union. These were compared with a control group injected with PBS (n=4) and with allogenic (n=5) and xenogeneic (n=6) cell transplantation groups. The amount of callus was noticeably large in the autologous cell group and the distal-callus index was significantly greater than that of the other groups, P-value =<0.05, unpaired t-test, corrected by Benjamini & Hochberg.

We report a novel method for autologous MSCs implantation to stimulate fracture healing. Local injection of autologous fat-MSCs into the fracture site resulted in a solid union in all the tibias with statistically significantly greater amounts of callus.


There is a growing trend towards using pre-clinical models of atrophic non-union. This study investigated different fixation devices, by comparing the mechanical stability at the fracture site of tibia bone fixed by either intramedullary nail, compression plate or external fixator. 40 tibias from adult male Wistar rats' cadavers were osteotomised at the mid-shaft and a gap of 1 mm was created and maintained at the fracture site to simulate criteria of atrophic non-union model. These were divided into five groups (n=8 in each): the first group was fixed with 20G intramedullary nail, the second group with 18G nail, the third group with 4-hole plate, the fourth group with 6-hole plate, and the fifth group with external fixator. Tibia was harvested by leg disarticulation from the knee and ankle joints, the soft tissues were carefully removed from the leg, and tibias were kept hydrated throughout the experiment. Each group was then subdivided into two subgroups for mechanical testing: one for axial loading (n=4) and one for 4-point bending (n=4).

Statistical analysis was carried out by ANOVA with a fisher post-hoc comparison between groups. A p-value less than 0.05 was considered statistically significant. Axial load to failure data and stiffness data revealed that intramedullary nails are significantly stronger and stiffer than other devices, however there was no statistically significant difference axially between the nail thicknesses. In bending, load to failure revealed that 18G nails are significantly stronger than 20G. We concluded that 18G nail is superior to the other fixation devices, therefore it has been used for in-vivo experiments to create a novel model of atrophic non-union with stable fixation.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 112 - 115
1 Jun 2013
Ismail HD Phedy P Kholinne E Kusnadi Y Sandhow L Merlina M

Objectives

Nonunion is one of the most troublesome complications to treat in orthopaedics. Former authors believed that atrophic nonunion occurred as a result of lack of mesenchymal stem cells (MSCs). We evaluated the number and viability of MSCs in site of atrophic nonunion compared with those in iliac crest.

Methods

We enrolled five patients with neglected atrophic nonunions of long bones confirmed by clinical examinations and plain radiographs into this study. As much as 10 ml bone marrow aspirate was obtained from both the nonunion site and the iliac crest and cultured for three weeks. Cell numbers were counted using a haemocytometer and vitality of the cells was determined by trypan blue staining. The cells were confirmed as MSCs by evaluating their expression marker (CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and viability were compared between the nonunion and iliac creat sites.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 512 - 519
1 Oct 2016
Mills L Tsang J Hopper G Keenan G Simpson AHRW

Objectives

A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion.

Methods

Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.