Objectives. All Polyethylene Tibial components in Total Knee Arthroplasty have been in use for some years, studies showing equivalent results to Total Knee Arthroplasty (TKA) with metal-backed Tibial components at 10 years have shown no significant difference between the two on radiostereometric analysis and revision rates[1]. Post operative patient outcome data using standard metal-backed Tibial components is widely reported in the literature. This study is looking at patient outcomes following
We report the results of a prospective randomised controlled clinical trial assessing the radiosterophotogrametric analysis (RSA), clinical and radiological performance of a metal backed and an
Background and Purpose:. Modularity of the tibial component in total knee arthroplasties (TKA) has many surgical benefits. It also reduces inventory related expenses but increases implant cost. The resulting locking mechanism micromotion that leads to non-articular microwear and has been an accepted consequence of modularity. The purpose of this study is to evaluate the risk of revision (all-cause and aseptic) of a monoblock
Introduction. The precise indications for tibial component metal backing and modularity remain controversial in routine primary total knee arthroplasty. This is particularly true in elderly patients where the perceived benefits of metal backing such as load redistribution and the reduction of polyethylene strain may be clinically less relevant. The cost implications for choosing a metal-backed design over an all-polyethylene design may exceed USD500 per primary knee arthroplasty case. Methods. A prospective randomised clinical trial was carried out at the QEII Health Sciences Centre, Halifax, Nova Scotia, to compare modular metal-backed versus an
Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of
Background: Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of
Background: Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently there is a paucity of information examining the survival and outcomes of
Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of
Introduction. There is a demand for longer lasting arthroplasty implants driving the investigation of novel material combinations. PEEK has shown promise as an arthroplasty bearing material, with potentially relatively bio inert wear debris [1]. When coupled with an
Purpose. The aim of the present study was to look at survivorship and patient satisfaction of a fixed bearing unicompartmental knee arthroplasty with an
While the vast majority of total knee replacements performed throughout the world employ a modular metal-backed tibial tray, and not an all-polyethylene tray, this issue remains controversial. Proposed advantages to a metal-backed tray include: a) decreased bending strains, b) reduces compressive stresses in the cement and cancellous bone beneath the baseplate (especially in asymmetric loading), c) distributes load more evenly across the interface. Proposed advantages of an all-polyethylene tray include: a) cost reduction, b) reduced polyethylene thickness with the same amount of bone resection, c) increased tensile stresses at the interface during eccentric loading. The challenge is at present we don't know the >10-year track record of current generation tibial components. This debate centers on the <60-year-old. This is the most difficult patient in total knee arthroplasty with higher revision rates than an older cohort. It makes sense to use an all-polyethylene tibia if the revision rates turn out to be similar and you don't intend to do a polyethylene exchange in the future. It makes sense to do a modular tray if the results are similar, but there is an intention to do a polyethylene exchange in the future. If either one of these implants choices has a lower cumulative revision rate, then that is the implant of choice at present. However, we need to understand that at present we don't know if the results of current generation
There is no question that excellent long-term results have been demonstrated with
There is no question that excellent long-term results have been demonstrated with
Metal-backed tibial components in total knee arthroplasty (TKA) currently dominate the orthopaedic market due to intra-operative flexibility afforded by modularity. Metal-backing was first used in TKA as a method to potentially improve loading distributions over the tibial plateau at the interface between the prosthesis and the supporting cancellous bone. Many studies have compared metal-backed and
Aims: In this study, data from previously published survival analysis life tables of primary total condylar type TKRs has been combined to enable comparison of different design features. In particular, does posterior stabilisation or metal backing of the tibial component improve the longevity of primary cemented þxed bearing condylar type TKRs?Methods: To be included, the article had to give 5 or more years results of a primary cemented þxed bearing condylar type TKRs including a survival analysis life table. Series performed on a selected patient group (for example young age, elderly or rheumatoid arthritis) were excluded to reduce possible bias. When 2 series of the same implant from the same institution were available, the most recent article with the longest follow up was used. Results: Survival analysis data from 16 papers (5950 knees) was combined to compare design features. There was no difference in survival between posterior stabilised implants and those that were not or between metal-backed and
Implant selection in TKA remains highly variable. Surgeons consider pre-operative deformity, patient factors such as BMI and bone quality, surgical experience, retention or substitution for the PCL, type of articulation and polyethylene, cost, and fixation with or without cement. We have most frequently implanted the same implant for the majority of patients. This is based on the fact that multiple large series of TKAs have demonstrated that the most durable TKAs have been non-modular metal-backed tibial components, retention of the PCL, with a cemented all-polyethylene patellar component. Polymer wear must be addressed for long-term durability. One method for reducing polyethylene wear is eliminating modularity between a metal-backed tray and the articular bearing surface. This can be done with a metal-backed implant as with the IB-1, AGC, Vanguard Mono-lock, or with elimination of the metal backing via a one piece
25–40% of unicompartmental knee replacement (UKR) revisions are performed for unexplained pain possibly secondary to elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on cancellous bone strain in a finite element model (FEM) of a cemented fixed bearing medial UKR, validated using previously published acoustic emission data (AE). FEMs of composite tibiae implanted with an
Introduction:. The earliest evidence of particle-induced response is found in the synovium, leading to osteolytic defect. The degree of synovitis can be quantified by magnetic resonance imaging (MRI). This is the first long-term, prospective, matched-pair study using MRI to analyze wear-induced synovitis and osteolysis between rotating-platform posterior-stabilized (RP-PS), fixed-bearing metal-back (FB-MB), and
The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.Aims
Methods
Zirconium total knee replacements theoretically have a low incidence of failure as they are low friction, hard wearing and hypo allergenic; we present the five year survival data. Data was collected prospectively from 212 patients who underwent Profix zirconium total knee replacements with an