Advertisement for orthosearch.org.uk
Results 1 - 20 of 364
Results per page:
Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims. This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. Methods. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included. Results. Torsion index (TI) and apical vertebral rotation (AVR) were identified as accurate predictors of curve progression in early visits. Initial TI > 3.7° and AVR > 5.8° were predictive of curve progression. Thoracic hypokyphosis was inconsistently observed in progressive curves with weak evidence. While sagittal wedging was observed in mild curves, there is insufficient evidence for its correlation with curve progression. In curves with initial Cobb angle < 25°, Cobb angle was a poor predictor for future curve progression. Prediction accuracy was improved by incorporating serial reconstructions in stepwise layers. However, a lack of post-hoc analysis was identified in studies involving geometrical models. Conclusion. For patients with mild curves, TI and AVR were identified as predictors of curve progression, with TI > 3.7° and AVR > 5.8° found to be important thresholds. Cobb angle acts as a poor predictor in mild curves, and more investigations are required to assess thoracic kyphosis and wedging as predictors. Cumulative reconstruction of radiographs improves prediction accuracy. Comprehensive analysis between progressive and non-progressive curves is recommended to extract meaningful thresholds for clinical prognostication. Cite this article: Bone Jt Open 2024;5(3):243–251


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results. Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion. Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice. Cite this article: Bone Joint J 2024;106-B(11):1216–1222


Aims. The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS). Methods. A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review. Results. For unbraced patients, high and moderate evidence was found for Cobb angle and curve type as predictors, respectively. Initial Cobb angle > 25° and thoracic curves were predictive of curve progression. For braced patients, flexibility < 28% and limited in-brace correction were factors predictive of progression with high and moderate evidence, respectively. Thoracic curves, high apical vertebral rotation, large rib vertebra angle difference, small rib vertebra angle on the convex side, and low pelvic tilt had weak evidence as predictors of curve progression. Conclusion. For curve progression, strong and consistent evidence is found for Cobb angle, curve type, flexibility, and correction rate. Cobb angle > 25° and flexibility < 28% are found to be important thresholds to guide clinical prognostication. Despite the low evidence, apical vertebral rotation, rib morphology, and pelvic tilt may be promising factors. Cite this article: Bone Joint J 2022;104-B(4):424–432


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims. cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. Methods. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Results. CREB1 was hyperactive in osteoarthritic articular cartilage, interleukin (IL)-1β-treated cartilage explants, and IL-1β- or carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-treated chondrocytes. 666-15 enhanced cell viability of OA-like chondrocytes and alleviated IL-1β- or CCCP-induced chondrocyte injury through inhibition of mitochondrial dysfunction-associated apoptosis. Moreover, inhibition of CREB1 by 666-15 suppressed expression of ADAMTS4. Additionally, 666-15 alleviated joint degeneration in an ACLT mouse model. Conclusion. Hyperactive CREB1 played a critical role in OA development, and 666-15 exerted anti-IL-1β or anti-CCCP effects in vitro as well as joint-protective effects in vivo. 666-15 may therefore be used as a promising anti-OA drug. Cite this article: Bone Joint Res 2024;13(1):4–18


Bone & Joint Research
Vol. 8, Issue 12 | Pages 582 - 592
1 Dec 2019
Sansone V Applefield RC De Luca P Pecoraro V Gianola S Pascale W Pascale V

Aims. The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. Methods. A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported. Results. In total, 14 publications met our inclusion criteria and were included in our review. Our meta-analysis showed that, when measured by the modified Mankin Histological-Histochemical Grading System, there was a significantly higher rate of OA in mice fed a HFD than in mice on a CD (standardized mean difference (SMD) 1.27, 95% confidence interval (CI) 0.63 to 1.91). Using the Osteoarthritis Research Society International (OARSI) score, there was a trend towards HFD causing OA (SMD 0.78, 95% CI -0.04 to 1.61). In terms of OA progression, a HFD consistently worsened the progression of surgically induced OA when compared with a CD. Finally, numerous inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and leptin, among others, were found to be altered by a HFD. Conclusion. A HFD seems to induce or exacerbate the progression of OA in mice. The metabolic changes and systemic inflammation brought about by a HFD appear to be key players in the onset and progression of OA. Cite this article: Bone Joint Res 2019;8:582–592


Bone & Joint Research
Vol. 9, Issue 11 | Pages 789 - 797
2 Nov 2020
Seco-Calvo J Sánchez-Herráez S Casis L Valdivia A Perez-Urzelai I Gil J Echevarría E

Aims. To analyze the potential role of synovial fluid peptidase activity as a measure of disease burden and predictive biomarker of progression in knee osteoarthritis (KOA). Methods. A cross-sectional study of 39 patients (women 71.8%, men 28.2%; mean age of 72.03 years (SD 1.15) with advanced KOA (Ahlbäck grade ≥ 3 and clinical indications for arthrocentesis) recruited through the (Orthopaedic Department at the Complejo Asistencial Universitario de León, Spain (CAULE)), measuring synovial fluid levels of puromycin-sensitive aminopeptidase (PSA), neutral aminopeptidase (NAP), aminopeptidase B (APB), prolyl endopeptidase (PEP), aspartate aminopeptidase (ASP), glutamyl aminopeptidase (GLU) and pyroglutamyl aminopeptidase (PGAP). Results. Synovial fluid peptidase activity varied significantly as a function of clinical signs, with differences in levels of PEP (p = 0.020), ASP (p < 0.001), and PGAP (p = 0. 003) associated with knee locking, PEP (p = 0.006), ASP (p = 0.001), GLU (p = 0.037), and PGAP (p = 0.000) with knee failure, and PEP (p = 0.006), ASP (p = 0.001), GLU (p = 0.037), and PGAP (p < 0.001) with knee effusion. Further, patients with the greatest functional impairment had significantly higher levels of APB (p = 0.005), PEP (p = 0.005), ASP (p = 0.006), GLU (p = 0.020), and PGAP (p < 0.001) activity, though not of NAP or PSA, indicating local alterations in the renin-angiotensin system. A binary logistic regression model showed that PSA was protective (p = 0.005; Exp (B) 0.949), whereas PEP (p = 0.005) and GLU were risk factors (p = 0.012). Conclusion. These results suggest synovial fluid peptidase activity could play a role as a measure of disease burden and predictive biomarker of progression in KOA. Cite this article: Bone Joint Res 2020;9(11):789–797


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives. This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model. Methods. Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR). Results. The OARSI score was significantly lower in mice treated with SRT1720 than in control mice at eight and 12 weeks associated with the decreased size of osteophytes at four and eight weeks. The delayed OA progression in the mice treated with SRT1720 was also associated with increased SIRT1-positive chondrocytes and decreased MMP-13-, ADAMTS-5-, cleaved caspase-3-, PARP p85-, and acetylated NF-κB p65-positive chondrocytes and decreased synovitis at four and eight weeks. SRT1720 treatment partially rescued the decreases in collagen type II alpha 1 (COL2A1) and aggrecan caused by IL-1β, while also reducing the induction of MMP-13 by IL-1β in vitro. Conclusion. The intraperitoneal injection of SRT1720 attenuated experimental OA progression in mice, indicating that SRT1720 could be a new therapeutic approach for OA. Cite this article: K. Nishida, T. Matsushita, K. Takayama, T. Tanaka, N. Miyaji, K. Ibaraki, D. Araki, N. Kanzaki, T. Matsumoto, R. Kuroda. Intraperitoneal injection of the SIRT1 activator SRT1720 attenuates the progression of experimental osteoarthritis in mice. Bone Joint Res 2018;7:252–262. DOI: 10.1302/2046-3758.73.BJR-2017-0227.R1


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives. In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. Methods. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score. Results. Both models showed an increase in joint pain as indicated by a significant (p < 0.05) decrease in the values of %HLWD at one week post-surgery. In the osteochondral injury model, the %HLWD returned to normal within three weeks, while in the ACLT model, a significant decrease in the %HLWD was persistent over an eight-week period. In addition, OA progression was more advanced in the ACLT model than in the osteochondral injury model. Furthermore, the ACLT model exhibited a higher mean OA score than that of the osteochondral injury model at 12 weeks. Conclusion. The development of pain patterns in the ACLT and osteochondral injury models is different in that the OA progression was significant in the ACLT model. Although both can be used as models for a post-traumatic injury of the knee, the selection of appropriate models for OA in preclinical studies should be specified and relevant to the clinical scenario. Cite this article: T. Tawonsawatruk, O. Sriwatananukulkit, W. Himakhun, W. Hemstapat. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018;7:244–251. DOI: 10.1302/2046-3758.73.BJR-2017-0121.R2


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). Methods. A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy. Results. The mean preoperative lesion volume was 18.7% (SD 10.2%) of the femoral head. This reduced to 11.6% (SD 7.5%) after three months (p = 0.015) and 3.7% (SD 3%) after one year (p < 0.001). Bone regeneration in healed cases represented a mean 81.2% (SD 13.8%) of the initial lesion volume at one year. Non-healed cases (n = 1 stage progression; n = 3 THAs) still showed bone regeneration but this did not effectively decrease the ON volume. A lesion size under mean 10% (SD 6%) of the femoral head at three months predicted no ON stage progression at one year. Regeneration in the lateral femoral head (C2 under Japanese Investigation Committee (JCI) classification) and in the central and posterior regions of the head was predominant in cases without ON progression. Conclusion. Bone regeneration was observed in osteonecrotic femoral heads three months after expanded autologous BM-hMSC injection, and the volume and location of regeneration indicated the success of the therapy. Cite this article: Bone Joint Res 2022;11(12):881–889


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims. The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment. Methods. Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery. Results. The baseline Cobb angles were similar (p = 0.374) in patients whose curves progressed (32.7° (SD 10.7)) and in those whose curves remained stable (31.4° (SD 6.1)). High supine flexibility (odds ratio (OR) 0.947 (95% CI 0.910 to 0.984); p = 0.006) and correction rate (OR 0.926 (95% CI 0.890 to 0.964); p < 0.001) predicted a lower incidence of progression after adjusting for Cobb angle, Risser sign, curve type, menarche status, distal radius and ulna grading, and brace compliance. ROC curve analysis identified a cut-off of 18.1% for flexibility (sensitivity 0.682, specificity 0.704) and a cut-off of 28.8% for correction rate (sensitivity 0.773, specificity 0.691) in predicting a lower risk of curve progression. A SCI of greater than 1.21 predicted a lower risk of progression (OR 0.4 (95% CI 0.251 to 0.955); sensitivity 0.583, specificity 0.591; p = 0.036). Conclusion. A higher supine flexibility (18.1%) and correction rate (28.8%), and a SCI of greater than 1.21 predicted a lower risk of progression. These novel parameters can be used as a guide to optimize the outcome of bracing. Cite this article: Bone Joint J 2022;104-B(4):495–503


Bone & Joint Open
Vol. 3, Issue 11 | Pages 885 - 893
14 Nov 2022
Goshima K Sawaguchi T Horii T Shigemoto K Iwai S

Aims. To evaluate whether low-intensity pulsed ultrasound (LIPUS) accelerates bone healing at osteotomy sites and promotes functional recovery after open-wedge high tibial osteotomy (OWHTO). Methods. Overall, 90 patients who underwent OWHTO without bone grafting were enrolled in this nonrandomized retrospective study, and 45 patients treated with LIPUS were compared with 45 patients without LIPUS treatment in terms of bone healing and functional recovery postoperatively. Clinical evaluations, including the pain visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) score, were performed preoperatively as well as six weeks and three, six, and 12 months postoperatively. The progression rate of gap filling was evaluated using anteroposterior radiographs at six weeks and three, six, and 12 months postoperatively. Results. The pain VAS and JOA scores significantly improved after OWHTO in both groups. Although the LIPUS group had better pain scores at six weeks and three months postoperatively, there were no significant differences in JOA score between the groups. The lateral hinge united at six weeks postoperatively in 34 (75.6%) knees in the control group and in 33 (73.3%) knees in the LIPUS group. The progression rates of gap filling in the LIPUS group were 8.0%, 15.0%, 27.2%, and 46.0% at six weeks and three, six, and 12 months postoperatively, respectively, whereas in the control group at the same time points they were 7.7%, 15.2%, 26.3%, and 44.0%, respectively. There were no significant differences in the progression rate of gap filling between the groups. Conclusion. The present study demonstrated that LIPUS did not promote bone healing and functional recovery after OWHTO with a locking plate. The routine use of LIPUS after OWHTO was not recommended from the results of our study. Cite this article: Bone Jt Open 2022;3(11):885–893


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims. Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results. The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion. Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA. Cite this article: Bone Joint Res 2024;13(3):110–123


Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims. Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). Methods. UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination. Discussion. The primary outcome is ‘treatment failure’ (Cobb angle progression to 50° or more before skeletal maturity); skeletal maturity is at Risser stage 4 in females and 5 in males, or ‘treatment success’ (Cobb angle less than 50° at skeletal maturity). The comparison is on a non-inferiority basis (non-inferiority margin 11%). Participants are followed up every six months while in brace, and at one and two years after skeletal maturity. Secondary outcomes include the Scoliosis Research Society 22 questionnaire and measures of quality of life, psychological effects of bracing, adherence, anxiety and depression, sleep, satisfaction, and educational attainment. All data will be collected through the British Spine Registry. Cite this article: Bone Jt Open 2023;4(11):873–880


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1092 - 1100
8 Dec 2024
Fraser E Spence S Farhan-Alanie OM Doonan J Mahendra A Gupta S

Aims. Limb salvage surgery (LSS) is the primary treatment option for primary bone malignancy. It involves the removal of bone and tissue, followed by reconstruction with endoprosthetic replacements (EPRs) to prevent amputation. Trabecular metal (TM) collars have been developed to encourage bone ingrowth (osseointegration (OI)) into EPRs. The primary aim of this study was to assess whether OI occurs when TM collars are used in EPRs for tumour. Methods. A total of 124 patients from July 2010 to August 2021 who underwent an EPR for tumour under the West of Scotland orthopaedic oncology team were identified. Overall, 81 patients (65%) met the inclusion criteria, and two consultants independently analyzed radiographs at three and 12 months, as well as the last radiograph, using a modified version of the Stanford Radiological Assessment System. Results. OI of the TM collar occurred in approximately 65% of patients at last radiograph. The percentage of patients with OI at three months (65.4%) reflected the 12-month (65%) and long-term (64.4%) follow-up. The median amount of OI across all radiographs was one at all three timepoints, with only five cases (11.1%) showing OI in all four zones at last radiograph. Radiolucency at the bone:collar junction was present in 23 cases (28.4%) at three months, but only four (6.7%) showed progression of this at 12 months. The interobserver reliability was found to be highly reliable in all parameters (p < 0.001). Conclusion. OI occurs in approximately 65% of TM collars, and is similar at three months, 12 months, and last radiograph. The extent of OI at the bone:collar junction was found to have decreased at longer-term follow-up. Furthermore, radiolucency at the bone-collar impact junction does occur in some patients but only a low number will show radiolucency progression at longer-term follow-up. Cite this article: Bone Jt Open 2024;5(12):1092–1100


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims. Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. Methods. We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators. Results. EDIL3 protein prevented chondrocyte clustering and maintained chondrocyte number and SOX9 expression in the human cartilage plug. Administration of EDIL3 protein prevented OA progression in STR/ort mice by maintaining the number of chondrocytes in the hyaline cartilage and the number of matrix-producing chondrocytes (MPCs). It reduced the degradation of aggrecan, the expression of matrix metalloproteinase (MMP)-13, the Osteoarthritis Research Society International (OARSI) score, and bone remodelling. It increased the porosity of the subchondral bone plate. Administration of an EDIL3 antibody increased the number of matrix-non-producing chondrocytes (MNCs) in cartilage and exacerbated the serum concentrations of OA-related pro-inflammatory cytokines, including monocyte chemotactic protein-3 (MCP-3), RANTES, interleukin (IL)-17A, IL-22, and GROα. Administration of β1 and β3 integrin agonists (CD98 protein) increased the expression of SOX9 in OA mice. Hence, EDIL3 might activate β1 and β3 integrins for chondroprotection. EDIL3 may also protect cartilage by attenuating the expression of IL-1β-enhanced phosphokinase proteins in chondrocytes, especially glycogen synthase kinase 3 alpha/beta (GSK-3α/β) and phospholipase C gamma 1 (PLC-γ1). Conclusion. EDIL3 has a role in maintaining the cartilage ECM and inhibiting the development of OA, making it a potential therapeutic drug for OA. Cite this article: Bone Joint Res 2023;12(12):734–746


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression. Results. Tensile strain could decrease the expression of circStrn3 in chondrocytes. CircStrn3 expression was significantly decreased in human and mouse OA cartilage tissues and chondrocytes. CircStrn3 could inhibit matrix metabolism of chondrocytes through competitively ‘sponging’ miRNA-9-5p targeting Kruppel-like factor 5 (KLF5), indicating that the decrease in circStrn3 might be a protective factor in mechanical instability-induced OA. The tensile strain stimulated chondrocytes to secrete exosomal miR-9-5p. Exosomes with high miR-9-5p expression from chondrocytes could inhibit osteoblast differentiation by targeting KLF5. Intra-articular injection of exosomal miR-9-5p alleviated the progression of OA induced by destabilized medial meniscus surgery in mice. Conclusion. Taken together, these results demonstrate that reduction of circStrn3 causes an increase in miR-9-5p, which acts as a protective factor in mechanical instability-induced OA, and provides a novel mechanism of communication among joint components and a potential application for the treatment of OA. Cite this article: Bone Joint Res 2023;12(1):33–45


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry. Results. We demonstrated that mCRP increases nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and Lipocalin 2 (LCN2) expression in human AF and NP cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signalling of mCRP. Finally, we demonstrated the presence of mCRP in human AF and NP tissues. Conclusion. Our results indicate, for the first time, that mCRP can be localized in IVD tissues, where it triggers a proinflammatory and catabolic state in degenerative and healthy IVD cells, and that NF-κβ signalling may be implicated in the mediation of this mCRP-induced state. Cite this article: Bone Joint Res 2023;12(3):189–198


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article: Bone Joint Res 2023;12(9):536–545


Bone & Joint Open
Vol. 4, Issue 12 | Pages 932 - 941
6 Dec 2023
Oe K Iida H Otsuki Y Kobayashi F Sogawa S Nakamura T Saito T

Aims. Although there are various pelvic osteotomies for acetabular dysplasia of the hip, shelf operations offer effective and minimally invasive osteotomy. Our study aimed to assess outcomes following modified Spitzy shelf acetabuloplasty. Methods. Between November 2000 and December 2016, we retrospectively evaluated 144 consecutive hip procedures in 122 patients a minimum of five years after undergoing modified Spitzy shelf acetabuloplasty for acetabular dysplasia including osteoarthritis (OA). Our follow-up rate was 92%. The mean age at time of surgery was 37 years (13 to 58), with a mean follow-up of 11 years (5 to 21). Advanced OA (Tönnis grade ≥ 2) was present preoperatively in 16 hips (11%). The preoperative lateral centre-edge angle ranged from -28° to 25°. Survival was determined by Kaplan-Meier analysis, using conversions to total hip arthroplasty as the endpoint. Risk factors for joint space narrowing less than 2 mm were analyzed using a Cox proportional hazards model. Results. The mean Merle d'Aubigné clinical score improved from 11.6 points (6 to 17) preoperatively to 15.9 points (12 to 18) at the last follow-up. The survival rates were 95% (95% confidence interval (CI) 91 to 99) and 86% (95% CI 50 to 97) at ten and 15 years. Multivariate Cox regression identified three factors associated with radiological OA progression: age (hazard ratio (HR) 2.85, 95% CI 1.05 to 7.76; p = 0.0398), preoperative joint space (HR 2.41, 95% CI 1.35 to 4.29; p = 0.0029), and preoperative OA (HR 8.34, 95% CI 0.94 to 73.77; p = 0.0466). Conclusion. Modified Spitzy shelf acetabuloplasty is an effective joint-preserving surgery with a wide range of potential indications. Cite this article: Bone Jt Open 2023;4(12):932–941


Bone & Joint Research
Vol. 13, Issue 4 | Pages 169 - 183
15 Apr 2024
Gil-Melgosa L Llombart-Blanco R Extramiana L Lacave I Abizanda G Miranda E Agirre X Prósper F Pineda-Lucena A Pons-Villanueva J Pérez-Ruiz A

Aims. Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. Methods. HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential. Results. Vorinostat, a HDACi compound, blocked the adipogenic transformation of muscle-associated FAPs in culture, promoting myogenic progression of the satellite cells. Furthermore, it protected muscle from degeneration after acute RC in mice in the earlier muscle degenerative stage after tenotomy. Conclusion. The HDACi vorinostat may be a candidate to prevent early muscular degeneration after RC injury. Cite this article: Bone Joint Res 2024;13(4):169–183