Aims. Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent
Aims. The Oswestry-Bristol Classification (OBC) was recently described as an MRI-based classification tool for the femoral trochlear. The authors demonstrated better inter- and
Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent
As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.Aims
Methods
A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.Aims
Methods
The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA). The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types.Aims
Methods
A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type.Aims
Methods
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods
The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.Aims
Methods
Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.Objectives
Methods
In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during high-flexion activities, varied according
to activity. We investigated the Aims
Materials and Methods
Because there have been no standard methods to determine pre-operatively
the thickness of resection of the proximal tibia in unicompartmental
knee arthroplasty (UKA), information about the relationship between
the change of limb alignment and the joint line elevation would
be useful for pre-operative planning. The purpose of this study
was to clarify the correlation between the change of limb alignment
and the change of joint line height at the medial compartment after
UKA. A consecutive series of 42 medial UKAs was reviewed retrospectively.
These patients were assessed radiographically both pre- and post-operatively
with standing anteroposterior radiographs. The thickness of bone
resection at the proximal tibia and the distal femur was measured
radiographically. The relationship between the change of femorotibial
angle (δFTA) and the change of joint line height, was analysed.Objectives
Methods