This review aims to summarize the outcomes used to describe effectiveness of treatments for paediatric wrist fractures within existing literature. We searched the Cochrane Library, Scopus, and Ovid Medline for studies pertaining to paediatric wrist fractures. Three authors independently identified and reviewed eligible studies. This resulted in a list of outcome domains and outcomes measures used within clinical research. Outcomes were mapped onto domains defined by the COMET collaborative.Objectives
Method
Due to the overwhelming demand for trauma services, resulting from increasing emergency department attendances over the past decade, virtual fracture clinics (VFCs) have become the fashion to keep up with the demand and help comply with the BOA Standards for Trauma and Orthopaedics (BOAST) guidelines. In this article, we perform a systematic review asking, “How useful are VFCs?”, and what injuries and conditions can be treated safely and effectively, to help decrease patient face to face consultations. Our primary outcomes were patient satisfaction, clinical efficiency and cost analysis, and clinical outcomes. We performed a systematic literature search of all papers pertaining to VFCs, using the search engines PubMed, MEDLINE, and the Cochrane Database, according to the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) checklist. Searches were carried out and screened by two authors, with final study eligibility confirmed by the senior author.Background
Methods
The aims of this study were to validate the outcome of total elbow arthroplasty (TEA) in patients with rheumatoid arthritis (RA), and to identify factors that affect the outcome. We searched PubMed, MEDLINE, Cochrane Reviews, and Embase from between January 2003 and March 2019. The primary aim was to determine the implant failure rate, the mode of failure, and risk factors predisposing to failure. A secondary aim was to identify the overall complication rate, associated risk factors, and clinical performance. A meta-regression analysis was completed to identify the association between each parameter with the outcome.Aims
Methods
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.