Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 8, Issue 3 | Pages 118 - 125
1 Mar 2019
Doi N Izaki T Miyake S Shibata T Ishimatsu T Shibata Y Yamamoto T

Objectives

Indocyanine green (ICG) fluorescence angiography is an emerging technique that can provide detailed anatomical information during surgery. The purpose of this study is to determine whether ICG fluorescence angiography can be used to evaluate the blood flow of the rotator cuff tendon in the clinical setting.

Methods

Twenty-six patients were evaluated from October 2016 to December 2017. The participants were categorized into three groups based on their diagnoses: the rotator cuff tear group; normal rotator cuff group; and adhesive capsulitis group. After establishing a posterior standard viewing portal, intravenous administration of ICG at 0.2 mg/kg body weight was performed, and fluorescence images were recorded. The time from injection of the drug to the beginning of enhancement of the observed area was measured. The hypovascular area in the rotator cuff was evaluated, and the ratio of the hypovascular area to the anterolateral area of the rotator cuff tendon was calculated (hypovascular area ratio).


Bone & Joint Research
Vol. 1, Issue 5 | Pages 78 - 85
1 May 2012
Entezari V Della Croce U DeAngelis JP Ramappa AJ Nazarian A Trechsel BL Dow WA Stanton SK Rosso C Müller A McKenzie B Vartanians V Cereatti A

Objectives

Cadaveric models of the shoulder evaluate discrete motion segments using the glenohumeral joint in isolation over a defined trajectory. The aim of this study was to design, manufacture and validate a robotic system to accurately create three-dimensional movement of the upper body and capture it using high-speed motion cameras.

Methods

In particular, we intended to use the robotic system to simulate the normal throwing motion in an intact cadaver. The robotic system consists of a lower frame (to move the torso) and an upper frame (to move an arm) using seven actuators. The actuators accurately reproduced planned trajectories. The marker setup used for motion capture was able to determine the six degrees of freedom of all involved joints during the planned motion of the end effector.