Advertisement for orthosearch.org.uk
Results 1 - 20 of 181
Results per page:
Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads. Results. Experimental pull-out strengths were excellently correlated to the µFE pull-out stiffness of the ROI (R. 2. > 0.87) and FV (R. 2. > 0.84) models. No significant difference due to screw design was observed. Cement augmentation increased pull-out stiffness by up to 94% and 48% for L and R screws, respectively, but only increased bending stiffness by up to 6.9% and 1.5%, respectively. Cementing involving only one screw tip resulted in lower stiffness increases in all tested screw designs and loading cases. The stiffening effect of cement augmentation on pull-out and bending stiffness was strongly and negatively correlated to local bone density around the screw (correlation coefficient (R) = -0.95). Conclusion. This combined experimental, µCT and µFE study showed that regional analyses may be sufficient to predict fixation strength in pull-out and that full analyses could show that cement augmentation around pedicle screws increased fixation stiffness in both pull-out and bending, especially for low-density bone. Cite this article: Bone Joint Res 2021;10(12):797–806


Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims. Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD. Methods. A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively. Results. We detected five, three, and seven candidate gut microbiota-related traits for L1-L4 BMD, total BMD, and femur BMD, respectively, such as genus Dialister (p = 0.004) for L1-L4 BMD, and genus Eisenbergiella (p = 0.046) for total BMD. We also detected two common gut microbiota-related traits shared by L1-L4 BMD, total BMD, and femur total BMD, including genus Escherichia Shigella and genus Lactococcus. Interaction analysis of BMD detected several genes that interacted with gut microbiota, such as phospholipase D1 (PLD1) and endomucin (EMCN) interacting with genus Dialister in total BMD, and COL12A1 and Discs Large MAGUK Scaffold Protein 2 (DLG2) interacting with genus Lactococcus in femur BMD. Conclusion. Our results suggest associations between gut microbiota and BMD, which will be helpful to further explore the regulation mechanism and intervention gut microbiota of BMD. Cite this article: Bone Joint Res 2021;10(11):734–741


Bone & Joint Research
Vol. 10, Issue 12 | Pages 830 - 839
15 Dec 2021
Robertson G Wallace R Simpson AHRW Dawson SP

Aims. Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. Methods. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading. Results. Cortical measures showed varying correlations with the forearm DXA results (range: Pearson correlation coefficient (r) = 0.343 (p = 0.251) to r = 0.521 (p = 0.068)), with none showing statistically significant correlations. Aluminium equivalent grading showed statistically significant correlations with the forearm DXA of the corresponding region of interest (p < 0.017). Conclusion. Cortical measures, cortical indices, and combined cortical scores did not show a statistically significant correlation to forearm DXA measures. Aluminium-equivalent is an easily applicable method for estimation of BMD from digital radiographs in the preoperative setting. Cite this article: Bone Joint Res 2021;10(12):830–839


Bone & Joint Research
Vol. 10, Issue 12 | Pages 820 - 829
15 Dec 2021
Schmidutz F Schopf C Yan SG Ahrend M Ihle C Sprecher C

Aims. The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). Methods. A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability. Results. The CBT could accurately be determined on XRs and highly correlated to those determined on CT scans (r = 0.87 to 0.93). The CBTavg index of the XRs significantly correlated with the BMD measured by DXA (r = 0.78) and HR-pQCT (r = 0.63), as did the CBTg index with the DXA (r = 0.55) and HR-pQCT (r = 0.64) (all p < 0.001). A high correlation of the BMD and CBT was observed between paired specimens (r = 0.79 to 0.96). The intra- and inter-rater reliability was excellent (ICC 0.79 to 0.92). Conclusion. The cortical index (CBTavg) at the distal radius shows a close correlation to the local BMD. It thus can serve as an initial screening tool to estimate the local bone quality if quantitative BMD measurements are unavailable, and enhance decision-making in acute settings on fracture management or further osteoporosis screening. Cite this article: Bone Joint Res 2021;10(12):820–829


Bone & Joint Research
Vol. 6, Issue 10 | Pages 584 - 589
1 Oct 2017
den Teuling J Pauwels B Janssen L Wyers C Janzing HMJ van den Bergh J Morrenhof JW

Objectives. The goal of this study is to investigate the relation between indicators of osteoporosis (i.e., bone mineral density (BMD), and Cortical Index (CI)) and the complexity of a fracture of the proximal humerus as a result of a low-energy trauma. Methods. A retrospective chart review of 168 patients (mean age 67.2 years, range 51 to 88.7) with a fracture of the proximal humerus between 2007 and 2011, whose BMD was assessed at the Fracture Liaison Service with Dual Energy X-ray Absorptiometry (DXA) measurements of the hip, femoral neck (FN) and/or lumbar spine (LS), and whose CI and complexity of fracture were assessed on plain anteroposterior radiographs of the proximal humerus. Results. No significant differences were found between simple and complex fractures of the proximal humerus in the BMD of the hip, FN or LS (all p > 0.3) or in the CI (p = 0.14). Only the body mass index was significantly higher in patients with a complex fracture compared with those with a simple fracture (26.9 vs 25.2; p = 0.05). Conclusion. There was no difference in BMD of the hip, FN, LS or CI of the proximal humerus in simple compared with complex fractures of the proximal humerus after a low-energy trauma. Factors other than the BMD and CI, for example body mass index, may play a more important role in the complexity of this fracture. Cite this article: J.W.A.M. den Teuling, B.S. Pauwels, L. Janssen, C.E. Wyers, H. M. J. Janzing, J.P.W. van den Bergh, J. W. Morrenhof. The Influence of bone mineral density and cortical index on the complexity of fractures of the proximal humerus. Bone Joint Res 2017;6:584–589. DOI: 10.1302/2046-3758.610.BJR-2017-0080


Bone & Joint Research
Vol. 9, Issue 3 | Pages 139 - 145
1 Mar 2020
Guebeli A Platz EA Paller CJ McGlynn KA Rohrmann S

Aims. To examine the relationship of sex steroid hormones with osteopenia in a nationally representative sample of men in the USA. Methods. Data on bone mineral density (BMD), serum sex hormones, dairy consumption, smoking status, and body composition were available for 806 adult male participants of the cross-sectional National Health and Nutrition Examination Survey (NHANES, 1999-2004). We estimated associations between quartiles of total and estimated free oestradiol (E2) and testosterone (T) and osteopenia (defined as 1 to 2.5 SD below the mean BMD for healthy 20- to 29-year-old men) by applying sampling weights and using multivariate-adjusted logistic regression. We then estimated the association between serum hormone concentrations and osteopenia by percentage of body fat, frequency of dairy intake, cigarette smoking status, age, and race/ethnicity. Results. Men in the lowest quartile of total E2 concentrations (< 21.52 pg/ml) had greater odds of osteopenia compared with men in the highest quartile (odds ratio (OR) 2.29, 95% confidence interval (CI) 1.11 to 4.73; p-trend = 0.030). Total and free T were not associated with osteopenia. Low total E2 concentrations were associated with greater odds of osteopenia among non-daily dairy consumers (p-trend = 0.046), current or former smokers (p-trend = 0.032), and younger men (p-trend = 0.031). No differences were observed by race/ethnicity and obesity. Conclusion. In this nationally representative study of the USA, men with lower total E2 were more likely to have osteopenia, which was particularly evident among younger men, men with less-than-daily dairy consumption, and current or former smokers. Cite this article:Bone Joint Res. 2020;9(3):139–145


Bone & Joint Research
Vol. 3, Issue 1 | Pages 14 - 19
1 Jan 2014
James SJ Mirza SB Culliford DJ Taylor PA Carr AJ Arden NK

Aims. Osteoporosis and abnormal bone metabolism may prove to be significant factors influencing the outcome of arthroplasty surgery, predisposing to complications of aseptic loosening and peri-prosthetic fracture. We aimed to investigate baseline bone mineral density (BMD) and bone turnover in patients about to undergo arthroplasty of the hip and knee. Methods. We prospectively measured bone mineral density of the hip and lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans in a cohort of 194 patients awaiting hip or knee arthroplasty. We also assessed bone turnover using urinary deoxypyridinoline (DPD), a type I collagen crosslink, normalised to creatinine. Results. The prevalence of DEXA proven hip osteoporosis (T-score ≤ -2.5) among hip and knee arthroplasty patients was found to be low at 2.8% (4 of 143). Spinal osteoporosis prevalence was higher at 6.9% (12 of 175). Sixty patients (42% (60 of 143)) had osteopenia or osteoporosis of either the hip or spine. The mean T-score for the hip was -0.34 (. sd. 1.23), which is within normal limits, and the mean hip Z-score was positive at 0.87 (. sd. 1.17), signifying higher-than-average BMD for age. The median urinary DPD/creatinine was raised in both female patients at 8.1 (interquartile range (IQR) 6.6 to 9.9) and male patients at 6.2 (IQR 4.8 to 7.5). Conclusions. Our results indicate hip and knee arthroplasty patients have higher BMD of the hip and spine compared with an age-matched general population, and a lower prevalence of osteoporosis. However, untreated osteoporotic patients are undergoing arthroplasty, which may negatively impact their outcome. Raised DPD levels suggest abnormal bone turnover, requiring further investigation. Cite this article: Bone Joint Res 2014;3:14–19


Bone & Joint Research
Vol. 10, Issue 12 | Pages 840 - 843
15 Dec 2021
Al-Hourani K Tsang SJ Simpson AHRW


Bone & Joint Research
Vol. 6, Issue 10 | Pages 572 - 576
1 Oct 2017
Wang W Huang S Hou W Liu Y Fan Q He A Wen Y Hao J Guo X Zhang F

Objectives. Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data. Method. We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. Results. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10. -4. for LS and 2.7 × 10. -2. for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10. -4. for femoral necks and 2.6 × 10. -2. for lumbar spines BMD in meQTLs-based GSEA). Conclusion. Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article: W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572–576


Bone & Joint Research
Vol. 6, Issue 1 | Pages 8 - 13
1 Jan 2017
Acklin YP Zderic I Grechenig S Richards RG Schmitz P Gueorguiev B

Objectives. Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible. The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws. Materials and Methods. A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm. 3. (standard deviation (. sd). 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups. Results. Initial axial construct stiffness was not significantly different between the groups (p = 0.463). Interfragmentary displacement and gap angle at the fracture site were also not statistically significantly different between the groups throughout the evaluated cycles (p ⩾ 0.249). Similarly, cycles to failure were not statistically different between Group 1 (8438, . sd. 6968) and Group 2 (10 213, . sd. 10 334), p = 0.379. Failure mode in both groups was characterised by screw cutting through the cancellous bone. Conclusion. From a biomechanical point of view, pubic ramus stabilisation with either one large or two small fragment screw osteosynthesis is comparable in osteoporotic bone. However, the two-screw fixation technique is less demanding as the smaller screws deflect at the cortical margins. Cite this article: Y. P. Acklin, I. Zderic, S. Grechenig, R. G. Richards, P. Schmitz, B. Gueorguiev. Are two retrograde 3.5 mm screws superior to one 7.3 mm screw for anterior pelvic ring fixation in bones with low bone mineral density? Bone Joint Res 2017;6:8–13. DOI: 10.1302/2046-3758.61.BJR-2016-0261


Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective. In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations. Methods. In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation. . Results. The standard deviation (. sd. ) of the mean paired difference in fixation stability increased from 2 mm in donor pairs to 5 mm in BMD-matched pairs. Intra-pair correlation was 0.953 (Pearson’s r) in donor pairs and non-significant at -0.134 (Pearson’s r) in BMD-matched pairs. Required sample size to achieve a statistical power of 0.8 increased from ten pairs using donor pairs to 54 pairs using BMD-matched pairs. Conclusion. BMD cannot be used to create comparable test groups unless sample size is increased substantially and paired statistics are no longer valid. Cite this article: Bone Joint Res 2014;3:317–20


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 162 - 169
1 Feb 2020
Hoellwarth JS Tetsworth K Kendrew J Kang NV van Waes O Al-Maawi Q Roberts C Al Muderis M

Aims. Osseointegrated prosthetic limbs allow better mobility than socket-mounted prosthetics for lower limb amputees. Fractures, however, can occur in the residual limb, but they have rarely been reported. Approximately 2% to 3% of amputees with socket-mounted prostheses may fracture within five years. This is the first study which directly addresses the risks and management of periprosthetic osseointegration fractures in amputees. Methods. A retrospective review identified 518 osseointegration procedures which were undertaken in 458 patients between 2010 and 2018 for whom complete medical records were available. Potential risk factors including time since amputation, age at osseointegration, bone density, weight, uni/bilateral implantation and sex were evaluated with multiple logistic regression. The mechanism of injury, technique and implant that was used for fixation of the fracture, pre-osseointegration and post fracture mobility (assessed using the K-level) and the time that the prosthesis was worn for in hours/day were also assessed. Results. There were 22 periprosthetic fractures; they occurred exclusively in the femur: two in the femoral neck, 14 intertrochanteric and six subtrochanteric, representing 4.2% of 518 osseointegration operations and 6.3% of 347 femoral implants. The vast majority (19/22, 86.4%) occurred within 2 cm of the proximal tip of the implant and after a fall. No fractures occurred spontaneously. Fixation most commonly involved dynamic hip screws (10) and reconstruction plates (9). No osseointegration implants required removal, the K-level was not reduced after fixation of the fracture in any patient, and all retained a K-level of ≥ 2. All fractures united, 21 out of 22 patients (95.5%) wear their osseointegration-mounted prosthetic limb longer daily than when using a socket, with 18 out of 22 (81.8%) reporting using it for ≥ 16 hours daily. Regression analysis identified a 3.89-fold increased risk of fracture for females (p = 0.007) and a 1.02-fold increased risk of fracture per kg above a mean of 80.4 kg (p = 0.046). No increased risk was identified for bilateral implants (p = 0.083), time from amputation to osseointegration (p = 0.974), age at osseointegration (p = 0.331), or bone density (g/cm2, p = 0.560; T-score, p = 0.247; Z-score, p = 0.312). Conclusion. The risks and sequelae of periprosthetic fracture after press-fit osseointegration for amputation should not deter patients or clinicians from considering this procedure. Females and heavier patients are likely to have an increased risk of fracture. Age, years since amputation, and bone density do not appear influential. Cite this article: Bone Joint J 2020;102-B(2):162–169


Bone & Joint Open
Vol. 5, Issue 3 | Pages 236 - 242
22 Mar 2024
Guryel E McEwan J Qureshi AA Robertson A Ahluwalia R

Aims. Ankle fractures are common injuries and the third most common fragility fracture. In all, 40% of ankle fractures in the frail are open and represent a complex clinical scenario, with morbidity and mortality rates similar to hip fracture patients. They have a higher risk of complications, such as wound infections, malunion, hospital-acquired infections, pressure sores, veno-thromboembolic events, and significant sarcopaenia from prolonged bed rest. Methods. A modified Delphi method was used and a group of experts with a vested interest in best practice were invited from the British Foot and Ankle Society (BOFAS), British Orthopaedic Association (BOA), Orthopaedic Trauma Society (OTS), British Association of Plastic & Reconstructive Surgeons (BAPRAS), British Geriatric Society (BGS), and the British Limb Reconstruction Society (BLRS). Results. In the first stage, there were 36 respondents to the survey, with over 70% stating their unit treats more than 20 such cases per year. There was a 50:50 split regarding if the timing of surgery should be within 36 hours, as per the hip fracture guidelines, or 72 hours, as per the open fracture guidelines. Overall, 75% would attempt primary wound closure and 25% would utilize a local flap. There was no orthopaedic agreement on fixation, and 75% would permit weightbearing immediately. In the second stage, performed at the BLRS meeting, experts discussed the survey results and agreed upon a consensus for the management of open elderly ankle fractures. Conclusion. A mutually agreed consensus from the expert panel was reached to enable the best practice for the management of patients with frailty with an open ankle fracture: 1) all units managing lower limb fragility fractures should do so through a cohorted multidisciplinary pathway. This pathway should follow the standards laid down in the "care of the older or frail orthopaedic trauma patient" British Orthopaedic Association Standards for Trauma and Orthopaedics (BOAST) guideline. These patients have low bone density, and we should recommend full falls and bone health assessment; 2) all open lower limb fragility fractures should be treated in a single stage within 24 hours of injury if possible; 3) all patients with fragility fractures of the lower limb should be considered for mobilisation on the day following surgery; 4) all patients with lower limb open fragility fractures should be considered for tissue sparing, with judicious debridement as a default; 5) all patients with open lower limb fragility fractures should be managed by a consultant plastic surgeon with primary closure wherever possible; and 6) the method of fixation must allow for immediate unrestricted weightbearing. Cite this article: Bone Jt Open 2024;5(3):236–242


Bone & Joint Research
Vol. 9, Issue 2 | Pages 60 - 70
1 Feb 2020
Li Z Arioka M Liu Y Aghvami M Tulu S Brunski JB Helms JA

Aims. Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Methods. Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation. Results. Condensation significantly increased peri-implant bone density but it also produced higher strains at the interface between the bone and implant, which led to significantly more bone microdamage. Despite increased peri-implant bone density, condensation did not improve implant primary stability as measured by an in vivo lateral stability test. Ultimately, the condensed bone underwent resorption, which delayed the onset of new bone formation around the implant. Conclusion. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability or to new peri-implant bone formation. Cite this article:Bone Joint Res. 2020;9(2):60–70


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Research
Vol. 10, Issue 8 | Pages 514 - 525
2 Aug 2021
Chen C Kang L Chang L Cheng T Lin S Wu S Lin Y Chuang S Lee T Chang J Ho M

Aims. Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model. Methods. Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies. Results. PTH increased the endurance on the treadmill test, preserved glycosaminoglycans, and reduced Osteoarthritis Research Society International score and chondrocyte apoptosis rate. No difference was observed in the subchondral plate bone density or metaphyseal trabecular bone volume and bone morphogenetic 2 protein staining. Conclusion. Subchondral bone is crucial in the initiation and progression of OA. Although previous studies have shown that subcutaneous PTH alleviates knee OA by improving subchondral and metaphyseal bone mass, we demonstrated that intra-articular PTH injections improved spontaneous OA by directly affecting the cartilage rather than the subchondral or metaphyseal bone in a preclinical age-related OA model. Cite this article: Bone Joint Res 2021;10(8):514–525


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate. Results. Time series clustering allowed us to divide the patients into two groups, and the predictive factors were identified including patient- and operation-related factors. The area under the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction averaged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG), creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed significant association with the estimated patient-specific efficacy of bisphosphonate. Conclusion. Periprosthetic BMD loss after THA is predictable based on patient- and operation-related factors, and optimal prescription of bisphosphonate based on the prediction may prevent BMD loss. Cite this article: Bone Joint Res 2024;13(4):184–192


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. Methods. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Results. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (p. discovery GWAS. = 1.21 × 10. -25. , p. replication GWAS. = 1.80 × 10. -12. ), CCDC170 (p. discovery GWAS. = 1.23 × 10. -11. , p. replication GWAS. = 3.22 × 10. -9. ), and SOX6 (p. discovery GWAS. = 4.41 × 10. -15. , p. replication GWAS. = 6.57 × 10. -14. ). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10. -3. ) and positive regulation of chondrocyte differentiation (p = 9.27 × 10. -3. ). Conclusion. We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP. Cite this article: Bone Joint Res 2023;12(2):147–154


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims. Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems. Methods. In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years. Results. At two and five years, more patients considered the hip with the CLS femoral component as superior but without a statistically significant difference. There were no differences in clinical outcome, magnitude of femoral component migration, or change of bone mineral density at five years. At three months, the Fitmore femoral component had subsided a median -0.71 mm (interquartile range (IQR) -1.67 to -0.20) and the CLS femoral component -0.70 mm (IQR -1.53 to -0.17; p = 0.742). In both groups the femoral head centre had migrated posteriorly (Fitmore -0.17 mm (IQR -0.98 to -0.04) and CLS -0.23 mm (IQR -0.87 to 0.07; p = 0.936)). After three months neither of the femoral components showed much further migration. During the first postoperative year, one Fitmore femoral component was revised due to aseptic loosening. Conclusion. Up to five years, we found no statistically significant difference in outcomes between the Fitmore and the CLS femoral components. The slightly worse outcomes, including one revised hip because of loosening, speaks against the hypothesis that the Fitmore femoral component should be advantageous compared to the CLS if more patients had been recruited to this study. Cite this article: Bone Jt Open 2023;4(5):306–314