Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 9, Issue 10 | Pages 701 - 708
1 Oct 2020
Chen X Li H Zhu S Wang Y Qian W

Aims. The diagnosis of periprosthetic joint infection (PJI) has always been challenging. Recently, D-dimer has become a promising biomarker in diagnosing PJI. However, there is controversy regarding its diagnostic value. We aim to investigate the diagnostic value of D-dimer in comparison to ESR and CRP. Methods. PubMed, Embase, and the Cochrane Library were searched in February 2020 to identify articles reporting on the diagnostic value of D-dimer on PJI. Pooled analysis was conducted to investigate the diagnostic value of D-dimer, CRP, and ESR. Results. Six studies with 1,255 cases were included (374 PJI cases and 881 non-PJI cases). Overall D-dimer showed sensitivity of 0.80 (95% confidence interval (CI) 0.69 to 0.87) and specificity of 0.76 (95% CI 0.63 to 0.86). Sub-group analysis by excluding patients with thrombosis and hyper-coagulation disorders showed sensitivity of 0.82 (95% CI 0.70 to 0.90) and specificity of 0.80 (95% CI 0.70 to 0.88). Serum D-dimer showed sensitivity of 0.85 (95% CI 0.76 to 0.92), specificity of 0.83 (95% CI 0.74 to 0.90). Plasma D-dimer showed sensitivity of 0.67 (95% CI 0.60 to 0.73), specificity of 0.58 (95% CI 0.45 to 0.72). CRP showed sensitivity of 0.78 (95% CI 0.72 to 0.83), specificity of 0.81 (95% CI 0.72 to 0.87). ESR showed sensitivity of 0.68 (95% CI 0.63 to 0.73), specificity of 0.83 (95% CI 0.78 to 0.87). Conclusion. In patients without thrombosis or a hyper-coagulation disorder, D-dimer has a higher diagnostic value compared to CRP and ESR. In patients with the aforementioned conditions, D-dimer has higher sensitivity but lower specificity compared to ESR and CRP. We do not recommend the use of serum D-dimer in patients with thrombosis and hyper-coagulation disorders for diagnosing PJI. Serum D-dimer may perform better than plasma D-dimer. Further studies are needed to compare serum D-dimer and plasma D-dimer in arthroplasty patients. Cite this article: Bone Joint Res 2020;9(10):701–708


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


Aims

The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS).

Methods

A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 108 - 119
1 Mar 2020
Akhbari P Karamchandani U Jaggard MKJ Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims

Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes.

Methods

A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF.