Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint Research
Vol. 8, Issue 8 | Pages 367 - 377
1 Aug 2019
Chen M Chang C Chiang-Ni C Hsieh P Shih H Ueng SWN Chang Y

Objectives. Prosthetic joint infection (PJI) is the most common cause of arthroplasty failure. However, infection is often difficult to detect by conventional bacterial cultures, for which false-negative rates are 23% to 35%. In contrast, 16S rRNA metagenomics has been shown to quantitatively detect unculturable, unsuspected, and unviable pathogens. In this study, we investigated the use of 16S rRNA metagenomics for detection of bacterial pathogens in synovial fluid (SF) from patients with hip or knee PJI. Methods. We analyzed the bacterial composition of 22 SF samples collected from 11 patients with PJIs (first- and second-stage surgery). The V3 and V4 region of bacteria was assessed by comparing the taxonomic distribution of the 16S rDNA amplicons with microbiome sequencing analysis. We also compared the results of bacterial detection from different methods including 16S metagenomics, traditional cultures, and targeted Sanger sequencing. Results. Polymicrobial infections were not only detected, but also characterized at different timepoints corresponding to first- and second-stage exchange arthroplasty. Similar taxonomic distributions were obtained by matching sequence data against SILVA, Greengenes, and The National Center for Biotechnology Information (NCBI). All bacteria isolated from the traditional culture could be further identified by 16S metagenomics and targeted Sanger sequencing. Conclusion. The data highlight 16S rRNA metagenomics as a suitable and promising method to detect and identify infecting bacteria, most of which may be uncultivable. Importantly, the method dramatically reduces turnaround time to two days rather than approximately one week for conventional cultures. Cite this article: M-F. Chen, C-H. Chang, C. Chiang-Ni, P-H. Hsieh, H-N. Shih, S. W. N. Ueng, Y. Chang. Rapid analysis of bacterial composition in prosthetic joint infection by 16S rRNA metagenomic sequencing. Bone Joint Res 2019;8:367–377. DOI: 10.1302/2046-3758.88.BJR-2019-0003.R2


Bone & Joint Research
Vol. 9, Issue 7 | Pages 440 - 449
1 Jul 2020
Huang Z Li W Lee G Fang X Xing L Yang B Lin J Zhang W

Aims. The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in detecting pathogens from synovial fluid of prosthetic joint infection (PJI) patients. Methods. A group of 75 patients who underwent revision knee or hip arthroplasties were enrolled prospectively. Ten patients with primary arthroplasties were included as negative controls. Synovial fluid was collected for mNGS analysis. Optimal thresholds were determined to distinguish pathogens from background microbes. Synovial fluid, tissue, and sonicate fluid were obtained for culture. Results. A total of 49 PJI and 21 noninfection patients were finally included. Of the 39 culture-positive PJI cases, mNGS results were positive in 37 patients (94.9%), and were consistent with culture results at the genus level in 32 patients (86.5%) and at the species level in 27 patients (73.0%). Metagenomic next-generation sequencing additionally identified 15 pathogens from five culture-positive and all ten culture-negative PJI cases, and even one pathogen from one noninfection patient, while yielding no positive findings in any primary arthroplasty. However, seven pathogens identified by culture were missed by mNGS. The sensitivity of mNGS for diagnosing PJI was 95.9%, which was significantly higher than that of comprehensive culture (79.6%; p = 0.014). The specificity is similar between mNGS and comprehensive culture (95.2% and 95.2%, respectively; p = 1.0). Conclusion. Metagenomic next-generation sequencing can effectively identify pathogens from synovial fluid of PJI patients, and demonstrates high accuracy in diagnosing PJI. Cite this article: Bone Joint Res 2020;9(7):440–449


Bone & Joint Research
Vol. 13, Issue 8 | Pages 401 - 410
15 Aug 2024
Hu H Ding H Lyu J Chen Y Huang C Zhang C Li W Fang X Zhang W

Aims. This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. Methods. A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not. Results. A total of 147 patients were included in the no-mNGS group and 88 in the mNGS group. The mNGS group had a higher detection rate of rare pathogens than the no-mNGS group (21.6% vs 10.2%, p = 0.016). However, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and higher infection control rates compared with the no-mNGS group (p = 0.017, p = 0.003, and p = 0.028, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.957). In culture-negative cases, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and a higher infection control rate than the no-mNGS group (p = 0.036, p = 0.033, p = 0.022, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.748). Conclusion. mNGS improves detection of rare pathogens in BJIs. mNGS testing reduces antibiotic-related complications, shortens hospital stay and antibiotic use duration, and improves treatment success rate, benefits which are particularly evident in culture-negative cases. Cite this article: Bone Joint Res 2024;13(8):401–410


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 113 - 120
1 Feb 2023
Cai Y Liang J Chen X Zhang G Jing Z Zhang R Lv L Zhang W Dang X

Aims

This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%).

Methods

In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims

We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan.

Methods

We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.


Bone & Joint Open
Vol. 2, Issue 8 | Pages 576 - 582
2 Aug 2021
Fuchs M Kirchhoff F Reichel H Perka C Faschingbauer M Gwinner C

Aims

Current guidelines consider analyses of joint aspirates, including leucocyte cell count (LC) and polymorphonuclear percentage (PMN%) as a diagnostic mainstay of periprosthetic joint infection (PJI). It is unclear if these parameters are subject to a certain degree of variability over time. Therefore, the aim of this study was to evaluate the variation of LC and PMN% in patients with aseptic revision total knee arthroplasty (TKA).

Methods

We conducted a prospective, double-centre study of 40 patients with 40 knee joints. Patients underwent joint aspiration at two different time points with a maximum period of 120 days in between these interventions and without any events such as other joint aspirations or surgeries. The main indications for TKA revision surgery were aseptic implant loosening (n = 24) and joint instability (n = 11).


Bone & Joint Research
Vol. 10, Issue 2 | Pages 96 - 104
28 Jan 2021
Fang X Zhang L Cai Y Huang Z Li W Zhang C Yang B Lin J Wahl P Zhang W

Aims

Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms.

Methods

From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed.