Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1703 - 1708
1 Dec 2020
Miyanji F Pawelek J Nasto LA Simmonds A Parent S

Aims. Spinal fusion remains the gold standard in the treatment of idiopathic scoliosis. However, anterior vertebral body tethering (AVBT) is gaining widespread interest, despite the limited data on its efficacy. The aim of our study was to determine the clinical efficacy of AVBT in skeletally immature patients with idiopathic scoliosis. Methods. All consecutive skeletally immature patients with idiopathic scoliosis treated with AVBT enrolled in a longitudinal, multicentre, prospective database between 2013 and 2016 were analyzed. All patients were treated by one of two surgeons working at two independent centres. Data were collected prospectively in a multicentre database and supplemented retrospectively where necessary. Patients with a minimum follow-up of two years were included in the analysis. Clinical success was set a priori as a major coronal Cobb angle of < 35° at the most recent follow-up. Results. A total of 57 patients were included in the study. Their mean age was 12.7 years (SD 1.5; 8.2 to 16.7), with 95% being female. The mean preoperative Sanders score and Risser grade was 3.3 (SD 1.2), and 0.05 (0 to 3), respectively. The majority were thoracic tethers (96.5%) and the mean follow-up was 40.4 months (SD 9.3). The mean preoperative major curve of 51° (SD 10.9°; 31° to 81°) was significantly improved to a mean of 24.6° (SD 11.8°; 0° to 57°) at the first postoperative visit (45.6% (SD 17.6%; 7% to 107%); p < 0.001)) with further significant correction to a mean of 16.3° (SD 12.8°; -12 to 55; p < 0.001) at one year and a significant correction to a mean of 23° (SD 15.4°; -18° to 57°) at the final follow-up (42.9% (-16% to 147%); p < 0.001). Clinical success was achieved in 44 patients (77%). Most patients reached skeletal maturity, with a mean Risser score of 4.3 (SD 1.02), at final follow-up. The complication rate was 28.1% with a 15.8% rate of unplanned revision procedures. Conclusion. AVBT is associated with satisfactory correction of deformity and an acceptable complication rate when used in skeletally immature patients with idiopathic scoliosis. Improved patient selection and better implant technology may improve the 15.8% rate of revision surgery in these patients. Further scrutiny of the true effectiveness and long-term risks of this technique remains critical. Cite this article: Bone Joint J 2020;102-B(12):1703–1708


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 470 - 477
1 Apr 2019
Fjeld OR Grøvle L Helgeland J Småstuen MC Solberg TK Zwart J Grotle M

Aims. The aims of this study were to determine the rates of surgical complications, reoperations, and readmissions following herniated lumbar disc surgery, and to investigate the impact of sociodemographic factors and comorbidity on the rate of such unfavourable events. Patients and Methods. This was a longitudinal observation study. Data from herniated lumbar disc operations were retrieved from a large medical database using a combination of procedure and diagnosis codes from all public hospitals in Norway from 1999 to 2013. The impact of age, gender, geographical affiliation, education, civil status, income, and comorbidity on unfavourable events were analyzed by logistic regression. Results. Of 34 639 operations, 2.7% (95% confidence interval (CI) 2.6 to 2.9) had a surgical complication, 2.1% (95% CI 2.0 to 2.3) had repeat surgery within 90 days, 2.4% (95% CI 2.2 to 2.5) had a non-surgical readmission within 90 days, and 6.7% (95% CI 6.4 to 6.9) experienced at least one of these unfavourable events. Unfavourable events were found to be associated with advanced age and comorbidity. Conclusion. The results suggest that surgical complications are less frequent than previously suggested. There are limited associations between sociodemographic patient characteristics and unfavourable events. Cite this article: Bone Joint J 2019;101-B:470–477


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims

Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease.

Methods

We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 28 - 35
1 Jan 2018
Huang H Nightingale RW Dang ABC

Objectives. Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion. Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28–35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims

The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment.

Methods

Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 540 - 544
19 Jul 2021
Jensen MM Milosevic S Andersen GØ Carreon L Simony A Rasmussen MM Andersen MØ

Aims

The aim of this study was to identify factors associated with poor outcome following coccygectomy on patients with chronic coccydynia and instability of the coccyx.

Methods

From the Danish National Spine Registry, DaneSpine, 134 consecutive patients were identified from a single centre who had coccygectomy from 2011 to 2019. Patient demographic data and patient-reported outcomes, including pain measured on a visual analogue scale (VAS), Oswestry Disability Index (ODI), EuroQol five-dimension five-level questionnaire, and 36-Item Short-Form Health Survey questionnaire (SF-36) were obtained at baseline and at one-year follow-up. Patient satisfaction was obtained at follow-up. Regression analysis, including age, sex, smoking status, BMI, duration of symptoms, work status, welfare payment, preoperative VAS, ODI, and SF-36 was performed to identify factors associated with dissatisfaction with results at one-year follow-up.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives

Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL).

Materials and Methods

A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra.