Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 1, Issue 9 | Pages 585 - 593
24 Sep 2020
Caterson J Williams MA McCarthy C Athanasou N Temple HT Cosker T Gibbons M

Aims. The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG. Methods. In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)). Results. AG was best visualized with T1-weighted axial images providing sufficient cover in 25 cases confirmed by pathological findings.These results demonstrate AG as a discrete and substantial muscle of the anterior compartment of the thigh, deep to VI and useful in providing anterior soft tissue margin in distal femoral resection in bone tumours. Conclusion. Preoperative assessment of cover by AG may be useful in predicting cases where AG can be dissected, sparing the remaining quadriceps muscle, and therefore function. Cite this article: Bone Joint Open 2020;1-9:585–593


Bone & Joint Open
Vol. 4, Issue 2 | Pages 96 - 103
14 Feb 2023
Knowlson CN Brealey S Keding A Torgerson D Rangan A

Aims

Early large treatment effects can arise in small studies, which lessen as more data accumulate. This study aimed to retrospectively examine whether early treatment effects occurred for two multicentre orthopaedic randomized controlled trials (RCTs) and explore biases related to this.

Methods

Included RCTs were ProFHER (PROximal Fracture of the Humerus: Evaluation by Randomisation), a two-arm study of surgery versus non-surgical treatment for proximal humerus fractures, and UK FROST (United Kingdom Frozen Shoulder Trial), a three-arm study of two surgical and one non-surgical treatment for frozen shoulder. To determine whether early treatment effects were present, the primary outcome of Oxford Shoulder Score (OSS) was compared on forest plots for: the chief investigator’s (CI) site to the remaining sites, the first five sites opened to the other sites, and patients grouped in quintiles by randomization date. Potential for bias was assessed by comparing mean age and proportion of patients with indicators of poor outcome between included and excluded/non-consenting participants.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 907 - 912
23 Nov 2022
Hurley RJ McCabe FJ Turley L Maguire D Lucey J Hurson CJ

Aims

The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery.

Methods

Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines.


Bone & Joint Open
Vol. 1, Issue 9 | Pages 556 - 561
14 Sep 2020
Clough TM Shah N Divecha H Talwalkar S

Aims

The exact risk to patients undergoing surgery who develop COVID-19 is not yet fully known. This study aims to provide the current data to allow adequate consent regarding the risks of post-surgery COVID-19 infection and subsequent COVID-19-related mortality.

Methods

All orthopaedic trauma cases at the Wrightington Wigan and Leigh NHS Foundation Trust from ‘lockdown’ (23 March 2020) to date (15 June 2020) were collated and split into three groups. Adult ambulatory trauma surgeries (upper limb trauma, ankle fracture, tibial plateau fracture) and regional-specific referrals (periprosthetic hip fracture) were performed at a stand-alone elective site that accepted COVID-19-negative patients. Neck of femur fractures (NOFF) and all remaining non-NOFF (paediatric trauma, long bone injury) surgeries were performed at an acute site hospital (mixed green/blue site). Patients were swabbed for COVID-19 before surgery on both sites. Age, sex, nature of surgery, American Society of Anaesthesiologists (ASA) grade, associated comorbidity, length of stay, development of post-surgical COVID-19 infection, and post-surgical COVID-19-related deaths were collected.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 182 - 189
2 Jun 2020
Scott CEH Holland G Powell-Bowns MFR Brennan CM Gillespie M Mackenzie SP Clement ND Amin AK White TO Duckworth AD

Aims

This study aims to define the epidemiology of trauma presenting to a single centre providing all orthopaedic trauma care for a population of ∼ 900,000 over the first 40 days of the COVID-19 pandemic compared to that presenting over the same period one year earlier. The secondary aim was to compare this with population mobility data obtained from Google.

Methods

A cross-sectional study of consecutive adult (> 13 years) patients with musculoskeletal trauma referred as either in-patients or out-patients over a 40-day period beginning on 5 March 2020, the date of the first reported UK COVID-19 death, was performed. This time period encompassed social distancing measures. This group was compared to a group of patients referred over the same calendar period in 2019 and to publicly available mobility data from Google.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116