Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
Bone & Joint Open
Vol. 5, Issue 12 | Pages 1067 - 1071
2 Dec 2024
Salzmann M Kropp E Prill R Ramadanov N Adriani M Becker R

Aims. The transepicondylar axis is a well-established reference for the determination of femoral component rotation in total knee arthroplasty (TKA). However, when severe bone loss is present in the femoral condyles, rotational alignment can be more complicated. There is a lack of validated landmarks in the supracondylar region of the distal femur. Therefore, the aim of this study was to analyze the correlation between the surgical transepicondylar axis (sTEA) and the suggested dorsal cortex line (DCL) in the coronal plane and the inter- and intraobserver reliability of its CT scan measurement. Methods. A total of 75 randomly selected CT scans were measured by three experienced surgeons independently. The DCL was defined in the coronal plane as a tangent to the dorsal femoral cortex located 75 mm above the joint line in the frontal plane. The difference between sTEA and DCL was calculated. Descriptive statistics and angulation correlations were generated for the sTEA and DCL, as well as for the distribution of measurement error for intra- and inter-rater reliability. Results. The external rotation of the DCL to the sTEA was a mean of 9.47° (SD 3.06°), and a median of 9.2° (IQR 7.45° to 11.60°), with a minimum value of 1.7° and maximum of 16.3°. The measurements of the DCL demonstrated very good to excellent test-retest and inter-rater reliability coefficients (intraclass correlation coefficient 0.80 to 0.99). Conclusion. This study reveals a correlation between the sTEA and the DCL. Overall, 10° of external rotation of the dorsal femoral cortical bone to the sTEA may serve as a reliable landmark for initial position of the femoral component. Surgeons should be aware that there are outliers in this study in up to 17% of the measurements, which potentially could result in deviations of femoral component rotation. Cite this article: Bone Jt Open 2024;5(12):1067–1071


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Bone & Joint Open
Vol. 2, Issue 8 | Pages 638 - 645
1 Aug 2021
Garner AJ Edwards TC Liddle AD Jones GG Cobb JP

Aims. Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics. Methods. Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system. Results. Four classes were proposed: PR1, where no bone-implant interfaces are affected; PR2, where surgery does not include conversion to total knee arthroplasty, for example, a second partial arthroplasty to a native compartment; PR3, when a standard primary total knee prosthesis is used; and PR4 when revision components are necessary. Round one resulted in 92% inter-rater agreement (Kendall’s W 0.97; p < 0.005), rising to 93% in round two (Kendall’s W 0.98; p < 0.001). Round three demonstrated 97% agreement (Kendall’s W 0.98; p < 0.001), with high intra-rater reliability (interclass correlation coefficient (ICC) 0.99; 95% confidence interval 0.98 to 0.99). Round four resulted in 80% agreement (Kendall’s W 0.92; p < 0.001). Conclusion. The RPKC system accounts for all procedures which may be appropriate following partial knee arthroplasty. It has been shown to be reliable, repeatable and pragmatic. The implications for patient care and health economics are discussed. Cite this article: Bone Jt Open 2021;2(8):638–645


Bone & Joint Research
Vol. 12, Issue 10 | Pages 624 - 635
4 Oct 2023
Harrison CJ Plessen CY Liegl G Rodrigues JN Sabah SA Beard DJ Fischer F

Aims

To map the Oxford Knee Score (OKS) and High Activity Arthroplasty Score (HAAS) items to a common scale, and to investigate the psychometric properties of this new scale for the measurement of knee health.

Methods

Patient-reported outcome measure (PROM) data measuring knee health were obtained from the NHS PROMs dataset and Total or Partial Knee Arthroplasty Trial (TOPKAT). Assumptions for common scale modelling were tested. A graded response model (fitted to OKS item responses in the NHS PROMs dataset) was used as an anchor to calibrate paired HAAS items from the TOPKAT dataset. Information curves for the combined OKS-HAAS model were plotted. Bland-Altman analysis was used to compare common scale scores derived from OKS and HAAS items. A conversion table was developed to map between HAAS, OKS, and the common scale.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims

In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

Methods

This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives. We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods. A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results. Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions. These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7


Bone & Joint Research
Vol. 11, Issue 9 | Pages 619 - 628
7 Sep 2022
Yapp LZ Scott CEH Howie CR MacDonald DJ Simpson AHRW Clement ND

Aims

The aim of this study was to report the meaningful values of the EuroQol five-dimension three-level questionnaire (EQ-5D-3L) and EuroQol visual analogue scale (EQ-VAS) in patients undergoing primary knee arthroplasty (KA).

Methods

This is a retrospective study of patients undergoing primary KA for osteoarthritis in a university teaching hospital (Royal Infirmary of Edinburgh) (1 January 2013 to 31 December 2019). Pre- and postoperative (one-year) data were prospectively collected for 3,181 patients (median age 69.9 years (interquartile range (IQR) 64.2 to 76.1); females, n = 1,745 (54.9%); median BMI 30.1 kg/m2 (IQR 26.6 to 34.2)). The reliability of the EQ-5D-3L was measured using Cronbach’s alpha. Responsiveness was determined by calculating the anchor-based minimal clinically important difference (MCID), the minimal important change (MIC) (cohort and individual), the patient-acceptable symptom state (PASS) predictive of satisfaction, and the minimal detectable change at 90% confidence intervals (MDC-90).


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1062 - 1066
1 Dec 2021
Krasin E Gold A Morgan S Warschawski Y

Aims

Hereditary haemochromatosis is a genetic disorder that is caused by several known mutations in the human homeostatic iron regulator protein (HFE) gene. Abnormal accumulation of iron causes a joint disease that resembles osteoarthritis (OA), but appears at a relatively younger age and is accompanied by cirrhosis, diabetes, and injury to other organs. Increased serum transferrin saturation and ferritin levels are known markers of haemochromatosis with high positive predictive values.

Methods

We have retrospectively analyzed the iron studies of a cohort of 2,035 patients undergoing knee joint arthroplasty due to OA.


Bone & Joint Open
Vol. 1, Issue 8 | Pages 465 - 473
1 Aug 2020
Aspinall SK Wheeler PC Godsiff SP Hignett SM Fong DTP

Aims

This study aims to evaluate a new home medical stretching device called the Self Treatment Assisted Knee (STAK) tool to treat knee arthrofibrosis.

Methods

35 patients post-major knee surgery with arthrofibrosis and mean range of movement (ROM) of 68° were recruited. Both the STAK intervention and control group received standard physiotherapy for eight weeks, with the intervention group additionally using the STAK at home. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Oxford Knee Scores (OKS) were collected at all timepoints. An acceptability and home exercise questionnaire capturing adherence was recorded after each of the interventions.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives

The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process.

Methods

A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.


Bone & Joint Research
Vol. 8, Issue 5 | Pages 207 - 215
1 May 2019
Key S Scott G Stammers JG Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives

The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities.

Methods

Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 468 - 475
1 Jul 2018
He Q Sun H Shu L Zhu Y Xie X Zhan Y Luo C

Objectives

Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality.

Methods

Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives

Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE).

Materials and Methods

A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.


Bone & Joint Research
Vol. 4, Issue 8 | Pages 128 - 133
1 Aug 2015
Kuwashima U Okazaki K Tashiro Y Mizu-Uchi H Hamai S Okamoto S Murakami K Iwamoto Y

Objectives

Because there have been no standard methods to determine pre-operatively the thickness of resection of the proximal tibia in unicompartmental knee arthroplasty (UKA), information about the relationship between the change of limb alignment and the joint line elevation would be useful for pre-operative planning. The purpose of this study was to clarify the correlation between the change of limb alignment and the change of joint line height at the medial compartment after UKA.

Methods

A consecutive series of 42 medial UKAs was reviewed retrospectively. These patients were assessed radiographically both pre- and post-operatively with standing anteroposterior radiographs. The thickness of bone resection at the proximal tibia and the distal femur was measured radiographically. The relationship between the change of femorotibial angle (δFTA) and the change of joint line height, was analysed.


Bone & Joint Research
Vol. 2, Issue 4 | Pages 70 - 78
1 Apr 2013
Hamilton DF McLeish JA Gaston P Simpson AHRW

Objectives

Lower limb muscle power is thought to influence outcome following total knee replacement (TKR). Post-operative deficits in muscle strength are commonly reported, although not explained. We hypothesised that post-operative recovery of lower limb muscle power would be influenced by the number of satellite cells in the quadriceps muscle at time of surgery.

Methods

Biopsies were obtained from 29 patients undergoing TKR. Power output was assessed pre-operatively and at six and 26 weeks post-operatively with a Leg Extensor Power Rig and data were scaled for body weight. Satellite cell content was assessed in two separate analyses, the first cohort (n = 18) using immunohistochemistry and the second (n = 11) by a new quantitative polymerase chain reaction (q-PCR) protocol for Pax-7 (generic satellite cell marker) and Neural Cell Adhesion Molecule (NCAM; marker of activated cells).