Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 50 - 55
1 Jan 2018
Kono K Tomita T Futai K Yamazaki T Tanaka S Yoshikawa H Sugamoto K

Aims. In Asia and the Middle-East, people often flex their knees deeply in order to perform activities of daily living. The purpose of this study was to investigate the 3D kinematics of normal knees during high-flexion activities. Our hypothesis was that the femorotibial rotation, varus-valgus angle, translations, and kinematic pathway of normal knees during high-flexion activities, varied according to activity. Materials and Methods. We investigated the in vivo kinematics of eight normal knees in four male volunteers (mean age 41.8 years; 37 to 53) using 2D and 3D registration technique, and modelled the knees with a computer aided design program. Each subject squatted, kneeled, and sat cross-legged. We evaluated the femoral rotation and varus-valgus angle relative to the tibia and anteroposterior translation of the medial and lateral side, using the transepicodylar axis as our femoral reference relative to the perpendicular projection on to the tibial plateau. This method evaluates the femur medially from what has elsewhere been described as the extension facet centre, and differs from the method classically applied. . Results. During squatting and kneeling, the knees displayed femoral external rotation. When sitting cross-legged, femurs displayed internal rotation from 10° to 100°. From 100°, femoral external rotation was observed. No significant difference in varus-valgus angle was seen between squatting and kneeling, whereas a varus position was observed from 140° when sitting cross-legged. The measure kinematic pathway using our methodology found during squatting a medial pivoting pattern from 0° to 40° and bicondylar rollback from 40° to 150°. During kneeling, a medial pivot pattern was evident. When sitting cross-legged, a lateral pivot pattern was seen from 0° to 100°, and a medial pivot pattern beyond 100°. Conclusion. The kinematics of normal knees during high flexion are variable according to activity. Nevertheless, our study was limited to a small number of male patients using a different technique to report the kinematics than previous publications. Accordingly, caution should be observed in generalizing our findings. Cite this article: Bone Joint J 2018;100-B:50–5


Bone & Joint Research
Vol. 3, Issue 10 | Pages 297 - 304
1 Oct 2014
Fitch DA Sedacki K Yang Y

Objectives. This systematic review and meta-analysis was conducted to determine the mid- to long-term clinical outcomes for a medial-pivot total knee replacement (TKR) system. The objectives were to synthesise available survivorship, Knee Society Scores (KSS), and reasons for revision for this system. Methods. A systematic search was conducted of two online databases to identify sources of survivorship, KSS, and reasons for revision. Survivorship results were compared with values in the National Joint Registry of England, Wales, and Northern Ireland (NJR). Results. A total of eight studies that included data for 1146 TKRs performed in six countries satisfied the inclusion/exclusion criteria. Pooled component survivorship estimates were 99.2% (95% CI, 97.7 to 99.7) and 97.6% (95% CI, 95.8 to 98.6) at five and eight years, respectively. Survivorship was similar or better when compared with rates reported for all cemented TKRs combined in the NJR and was significantly better than some insert types at mid-term intervals. The weighted mean post-operative KSS was 87.9 (73.2 to 94.2), in the excellent range. Similar cumulative revision rates and KSS were reported at centres in the United States, Europe, and Asia. Conclusions. The subject system was associated with survivorship and KSS similar or better than that reported for other TKR systems. Cite this article: Bone Joint Res 2014;3:297–304