Advertisement for orthosearch.org.uk
Results 1 - 50 of 150
Results per page:
Bone & Joint Open
Vol. 4, Issue 11 | Pages 817 - 824
1 Nov 2023
Filis P Varvarousis D Ntritsos G Dimopoulos D Filis N Giannakeas N Korompilias A Ploumis A

Aims. The standard of surgical treatment for lower limb neoplasms had been characterized by highly interventional techniques, leading to severe kinetic impairment of the patients and incidences of phantom pain. Rotationplasty had arisen as a potent limb salvage treatment option for young cancer patients with lower limb bone tumours, but its impact on the gait through comparative studies still remains unclear several years after the introduction of the procedure. The aim of this study is to assess the effect of rotationplasty on gait parameters measured by gait analysis compared to healthy individuals. Methods. The MEDLINE, Scopus, and Cochrane databases were systematically searched without time restriction until 10 January 2022 for eligible studies. Gait parameters measured by gait analysis were the outcomes of interest. Results. Three studies were eligible for analyses. Compared to healthy individuals, rotationplasty significantly decreased gait velocity (-1.45 cm/sec; 95% confidence interval (CI) -1.98 to -0.93; p < 0.001), stride length (-1.20 cm; 95% CI -2.31 to -0.09; p < 0.001), cadence (-0.83 stride/min; 95% (CI -1.29 to -0.36; p < 0.001), and non-significantly increased cycle time (0.54 sec; 95% CI -0.42 to 1.51; p = 0.184). Conclusion. Rotationplasty is a valid option for the management of lower limb bone tumours in young cancer patients. Larger studies, with high patient accrual, refined surgical techniques, and well planned rehabilitation strategies, are required to further improve the reported outcomes of this procedure. Cite this article: Bone Jt Open 2023;4(11):817–824


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1423 - 1430
1 Nov 2019
Wiik AV Lambkin R Cobb JP

Aims. The aim of this study was to assess the functional gain achieved following hip resurfacing arthroplasty (HRA). Patients and Methods. A total of 28 patients (23 male, five female; mean age, 56 years (25 to 73)) awaiting Birmingham HRA volunteered for this prospective gait study, with an age-matched control group of 26 healthy adults (16 male, ten female; mean age, 56 years (33 to 84)). The Oxford Hip Score (OHS) and gait analysis using an instrumented treadmill were used preoperatively and more than two years postoperatively to measure the functional change attributable to the intervention. Results. The mean OHS improved significantly from 27 to 46 points (p < 0.001) at a mean of 29 months (12 to 60) after HRA. The mean metal ion levels at a mean 32 months (13 to 60) postoperatively were 1.71 (0.77 to 4.83) µg/l (ppb) and 1.77 (0.68 to 4.16) µg/l (ppb) for cobalt and chromium, respectively. When compared with healthy controls, preoperative patients overloaded the contralateral good hip, limping significantly. After HRA, patients walked at high speeds, with symmetrical gait, statistically indistinguishable from healthy controls over almost all characteristics. The control group could only be distinguished by an increased push-off force at higher speeds, which may reflect the operative approach. Conclusion. Patients undergoing HRA improved their preoperative gait pattern of a significant limp to a symmetrical gait at high speeds and on inclines, almost indistinguishable from normal controls. HRA with an approved device offers substantial functional gains, almost indistinguishable from healthy controls. Cite this article: Bone Joint J 2019;101-B:1423–1430


Bone & Joint Open
Vol. 1, Issue 7 | Pages 384 - 391
10 Jul 2020
McCahill JL Stebbins J Harlaar J Prescott R Theologis T Lavy C

Aims. To assess if older symptomatic children with club foot deformity differ in perceived disability and foot function during gait, depending on initial treatment with Ponseti or surgery, compared to a control group. Second aim was to investigate correlations between foot function during gait and perceived disability in this population. Methods. In all, 73 children with idiopathic club foot were included: 31 children treated with the Ponseti method (mean age 8.3 years; 24 male; 20 bilaterally affected, 13 left and 18 right sides analyzed), and 42 treated with primary surgical correction (mean age 11.6 years; 28 male; 23 bilaterally affected, 18 left and 24 right sides analyzed). Foot function data was collected during walking gait and included Oxford Foot Model kinematics (Foot Profile Score and the range of movement and average position of each part of the foot) and plantar pressure (peak pressure in five areas of the foot). Oxford Ankle Foot Questionnaire, Disease Specific Index for club foot, Paediatric Quality of Life Inventory 4.0 were also collected. The gait data were compared between the two club foot groups and compared to control data. The gait data were also correlated with the data extracted from the questionnaires. Results. Our findings suggest that symptomatic children with club foot deformity present with similar degrees of gait deviations and perceived disability regardless of whether they had previously been treated with the Ponseti Method or surgery. The presence of sagittal and coronal plane hindfoot deformity and coronal plane forefoot deformity were associated with higher levels of perceived disability, regardless of their initial treatment. Conclusion. This is the first paper to compare outcomes between Ponseti and surgery in a symptomatic older club foot population seeking further treatment. It is also the first paper to correlate foot function during gait and perceived disability to establish a link between deformity and subjective outcomes. Cite this article: Bone Joint Open 2020;1-7:384–391


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 16 - 21
1 Oct 2016
Jones GG Kotti M Wiik AV Collins R Brevadt MJ Strachan RK Cobb JP

Aims. To compare the gait of unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) patients with healthy controls, using a machine-learning approach. Patients and Methods. 145 participants (121 healthy controls, 12 patients with cruciate-retaining TKA, and 12 with mobile-bearing medial UKA) were recruited. The TKA and UKA patients were a minimum of 12 months post-operative, and matched for pattern and severity of arthrosis, age, and body mass index. . Participants walked on an instrumented treadmill until their maximum walking speed was reached. Temporospatial gait parameters, and vertical ground reaction force data, were captured at each speed. Oxford knee scores (OKS) were also collected. An ensemble of trees algorithm was used to analyse the data: 27 gait variables were used to train classification trees for each speed, with a binary output prediction of whether these variables were derived from a UKA or TKA patient. Healthy control gait data was then tested by the decision trees at each speed and a final classification (UKA or TKA) reached for each subject in a majority voting manner over all gait cycles and speeds. Top walking speed was also recorded. Results. 92% of the healthy controls were classified by the decision tree as a UKA, 5% as a TKA, and 3% were unclassified. There was no significant difference in OKS between the UKA and TKA patients (p = 0.077). Top walking speed in TKA patients (1.6 m/s; 1.3 to 2.1) was significantly lower than that of both the UKA group (2.2 m/s; 1.8 to 2.7) and healthy controls (2.2 m/s; 1.5 to 2.7; p < 0.001). . Conclusion. UKA results in a more physiological gait compared with TKA, and a higher top walking speed. This difference in function was not detected by the OKS. Cite this article: Bone Joint J 2016;98-B(10 Suppl B):16–21


Aims. To systematically review the efficacy of split tendon transfer surgery on gait-related outcomes for children and adolescents with cerebral palsy (CP) and spastic equinovarus foot deformity. Methods. Five databases (CENTRAL, CINAHL, PubMed, Embase, Web of Science) were systematically screened for studies investigating split tibialis anterior or split tibialis posterior tendon transfer for spastic equinovarus foot deformity, with gait-related outcomes (published pre-September 2022). Study quality and evidence were assessed using the Methodological Index for Non-Randomized Studies, the Risk of Bias In Non-Randomized Studies of Interventions, and the Grading of Recommendations Assessment, Development and Evaluation. Results. Overall, 17 studies (566 feet) were included: 13 studies used clinical grading criteria to report a postoperative ‘success’ of 87% (75% to 100%), 14 reported on orthotic use with 88% reduced postoperative use, and one study reported on ankle kinematics improvements. Ten studies reported post-surgical complications at a rate of 11/390 feet (2.8%), but 84 feet (14.8%) had recurrent varus (68 feet, 12%) or occurrence of valgus (16 feet, 2.8%). Only one study included a patient-reported outcome measure (pain). Conclusion. Split tendon transfers are an effective treatment for children and youth with CP and spastic equinovarus foot deformities. Clinical data presented can be used for future study designs; a more standardized functional and patient-focused approach to evaluating outcomes of surgical intervention of gait may be warranted. Cite this article: Bone Jt Open 2023;4(5):283–298


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. Methods. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle. Results. The ACL tensile force in the intact knee was significantly affected with increasing PTS angle. Considerable differences were observed in kinematics and initial posterior femoral translation between the intact and ACLD joints as the PTS angles increased by more than 2.5° (beyond 11.4°). Additionally, a higher contact stress was detected in the peripheral posterior horn areas of the menisci with increasing PTS angle during the gait cycle. The maximum tensile force on the horn of the medial meniscus increased from 73.9 N to 172.4 N in the ACLD joint with increasing PTS angles. Conclusion. Knee joint instability and larger loading on the medial meniscus were found on the ACLD knee even at a 2.5° increase in PTS angle (larger than 11.4°). Our biomechanical findings support recent clinical evidence of a high risk of failure of ACL reconstruction with steeper PTS and the necessity of ACL reconstruction, which would prevent meniscus tear and thus the development or progression of osteoarthritis. Cite this article: Bone Joint Res 2022;11(10):739–750


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims. This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture. Methods. Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk. Results. During gait, varied sagittal positioning did not lead to excessive Von Mises stress or micromotion. However, under squat conditions, posterior positioning (-4 and -5 mm) resulted in stress exceeding 150 MPa at the femoral notch, indicating potential fracture risk. Conversely, +1 mm and 0 mm sagittal positions demonstrated minimal interface micromotion. Conclusion. Slightly anterior sagittal positioning (+1 mm) or neutral positioning (0 mm) effectively reduced stress concentration at the femoral notch and minimized interface micromotion. Thus, these positions are deemed suitable to decrease the risk of aseptic loosening and periprosthetic femoral fracture


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


Bone & Joint Research
Vol. 12, Issue 6 | Pages 352 - 361
1 Jun 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims. A core outcome set for adult, open lower limb fracture has been established consisting of ‘Walking, gait and mobility’, ‘Being able to return to life roles’, ‘Pain or discomfort’, and ‘Quality of life’. This study aims to identify which outcome measurement instruments (OMIs) should be recommended to measure each core outcome. Methods. A systematic review and quality assessment were conducted to identify existing instruments with evidence of good measurement properties in the open lower limb fracture population for each core outcome. Additionally, shortlisting criteria were developed to identify suitable instruments not validated in the target population. Candidate instruments were presented, discussed, and voted on at a consensus meeting of key stakeholders. Results. The Wales Lower Limb Trauma Recovery scale was identified, demonstrating validation evidence in the target population. In addition, ten candidate OMIs met the shortlisting criteria. Six patients, eight healthcare professionals, and 11 research methodologists attended the consensus meeting. Consensus was achieved for the EuroQol five-dimension five-level questionnaire (EQ-5D-5L) and the Lower Extremity Functional Scale (LEFS) to measure ‘Quality of life’ and ‘Walking, gait and mobility’ in future research trials, audit, and clinical assessment, respectively. No instrument met consensus criteria to measure ‘Being able to return to life roles’ and ‘Pain or discomfort’. However, the EQ-5D-5L was found to demonstrate good face validity and could also be used pragmatically to measure these two outcomes, accepting limitations in sensitivity. Conclusion. This study recommends the LEFS and EQ-5D-5L to measure the core outcome set for adult open lower limb fracture. Cite this article: Bone Joint Res 2023;12(6):352–361


Bone & Joint Research
Vol. 11, Issue 9 | Pages 669 - 678
1 Sep 2022
Clement RGE Hall AC Wong SJ Howie SEM Simpson AHRW

Aims. Staphylococcus aureus is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type S. aureus 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of S. aureus Hla alone with those of the animal’s immune response to infection. Methods. Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 10. 7. colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling. Results. Chondrocyte death was greater with 8325-4 (96.2% (SD 5.5%); p < 0.001) than DU1090 (28.9% (SD 16.0%); p = 0.009) and both were higher than controls (3.8% (SD 1.2%)). Histology revealed cartilage/bone damage with 8325-4 or DU1090 compared to controls (p = 0.010). Both infected groups lost weight (p = 0.006 for both) and experienced limb swelling (p = 0.043 and p = 0.018, respectively). Joints inoculated with bacteria showed significant alterations in gait cycle with a decreased stance phase, increased swing phase, and a corresponding decrease in swing speed. Conclusion. Murine joints inoculated with Hla-producing 8325-4 experienced significantly more chondrocyte death than those with DU1090, which lack the toxin. This was despite similar immune responses, indicating that Hla was the major cause of chondrocyte death. Hla-deficient DU1090 also elevated chondrocyte death compared to controls, suggesting a smaller additional deleterious role of the immune system on cartilage. Cite this article: Bone Joint Res 2022;11(9):669–678


Bone & Joint Research
Vol. 11, Issue 8 | Pages 518 - 527
17 Aug 2022
Hu W Lin J Wei J Yang Y Fu K Zhu T Zhu H Zheng X

Aims. To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope. Methods. Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system. Results. Surgical DMM with or without stereomicroscope led to decrease in the mean of weightbearing percentages (-20.64% vs -21.44%, p = 0.792) and paw withdrawal response thresholds (-21.35% vs -24.65%, p = 0.327) of the hind limbs. However, the coefficient of variation (CV) of weight-bearing percentages and paw withdrawal response thresholds in naked-eye group were significantly greater than that in the microscope group (19.82% vs 6.94%, p < 0.001; 21.85% vs 9.86%, p < 0.001). The gait analysis showed a similar pattern. Cartilage degeneration was observed in both DMM-surgery groups, evidenced by increased OARSI scores (summed score: 11.23 vs 11.43, p = 0.842), but the microscope group showed less variation in OARSI score than the naked-eye group (CV: 21.03% vs 32.44%; p = 0.032). Conclusion. Although surgical DMM aided by stereomicroscope is technically difficult, it produces a relatively more homogeneous OA model in terms of the discrete degree of pain behaviours and histopathological grading when compared with surgical DMM without stereomicroscope. Cite this article: Bone Joint Res 2022;11(8):518–527


Bone & Joint Research
Vol. 10, Issue 11 | Pages 723 - 733
1 Nov 2021
Garner AJ Dandridge OW Amis AA Cobb JP van Arkel RJ

Aims. Bi-unicondylar arthroplasty (Bi-UKA) is a bone and anterior cruciate ligament (ACL)-preserving alternative to total knee arthroplasty (TKA) when the patellofemoral joint is preserved. The aim of this study is to investigate the clinical outcomes and biomechanics of Bi-UKA. Methods. Bi-UKA subjects (n = 22) were measured on an instrumented treadmill, using standard gait metrics, at top walking speeds. Age-, sex-, and BMI-matched healthy (n = 24) and primary TKA (n = 22) subjects formed control groups. TKA subjects with preoperative patellofemoral or tricompartmental arthritis or ACL dysfunction were excluded. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were compared. Bi-UKA, then TKA, were performed on eight fresh frozen cadaveric knees, to investigate knee extensor efficiency under controlled laboratory conditions, using a repeated measures study design. Results. Bi-UKA walked 20% faster than TKA (Bi-UKA mean top walking speed 6.7 km/h (SD 0.9),TKA 5.6 km/h (SD 0.7), p < 0.001), exhibiting nearer-normal vertical ground reaction forces in maximum weight acceptance and mid-stance, with longer step and stride lengths compared to TKA (p < 0.048). Bi-UKA subjects reported higher OKS (p = 0.004) and EQ-5D (p < 0.001). In vitro, Bi-UKA generated the same extensor moment as native knees at low flexion angles, while reduced extensor moment was measured following TKA (p < 0.003). Conversely, at higher flexion angles, the extensor moment of TKA was normal. Over the full range, the extensor mechanism was more efficient following Bi-UKA than TKA (p < 0.028). Conclusion. Bi-UKA had more normal gait characteristics and improved patient-reported outcomes, compared to matched TKA subjects. This can, in part, be explained by differences in extensor efficiency. Cite this article: Bone Joint Res 2021;10(11):723–733


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims. Adenosine, lidocaine, and Mg. 2+. (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results. Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion. At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials. Cite this article: Bone Joint Res 2024;13(6):279–293


Bone & Joint Research
Vol. 12, Issue 4 | Pages 294 - 305
20 Apr 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims. Open lower limb fracture is life-changing, resulting in substantial morbidity and resource demand, while inconsistent outcome-reporting hampers systematic review and meta-analysis. A core outcome set establishes consensus among key stakeholders for the recommendation of a minimum set of outcomes. This study aims to define a core outcome set for adult open lower limb fracture. Methods. Candidate outcomes were identified from a previously published systematic review and a secondary thematic analysis of 25 patient interviews exploring the lived experience of recovery from open lower limb fracture. Outcomes were categorized and sequentially refined using healthcare professional and patient structured discussion groups. Consensus methods included a multi-stakeholder two-round online Delphi survey and a consensus meeting attended by a purposive sample of stakeholders, facilitated discussion, and voting using a nominal group technique. Results. Thematic analysis and systematic review identified 121 unique outcomes, reduced to 68 outcomes following structured discussion groups. Outcomes were presented to 136 participants who completed a two-round online Delphi survey. The Delphi survey resulted in 11 outcomes identified as consensus ‘in’ only. All outcomes were discussed at a consensus meeting attended by 15 patients, 14 healthcare professionals, 11 researchers, and one patient-carer. Consensus was achieved for a four-core outcome set: ‘Walking, gait and mobility’, ‘Being able to return to life roles’, ‘Pain or discomfort’, and ‘Quality of life’. Conclusion. This study used robust consensus methods to establish a core outcome set that should be measured in all future research studies and audits of clinical practice without precluding the measurement of additional outcomes. Cite this article: Bone Joint Res 2023;12(4):294–305


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. Methods. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. Results. Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. Conclusion. Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494–502


Bone & Joint Research
Vol. 8, Issue 11 | Pages 509 - 517
1 Nov 2019
Kang K Koh Y Park K Choi C Jung M Shin J Kim S

Objectives. The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods. Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results. Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion. The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions. Cite this article: Bone Joint Res 2019;8:509–517


Bone & Joint Open
Vol. 3, Issue 4 | Pages 340 - 347
22 Apr 2022
Winkler T Costa ML Ofir R Parolini O Geissler S Volk H Eder C

Aims. The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. Methods. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 10. 6. PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%. Conclusion. The HIPGEN study assesses the efficacy, safety, and tolerability of intramuscular PLX-PAD administration for the treatment of muscle injury following arthroplasty for hip fracture. It is the first phase III study to investigate the effect of an allogeneic cell therapy on improved mobilization after hip fracture, an aspect which is in sore need of addressing for the improvement in standard of care treatment for patients with FNF. Cite this article: Bone Jt Open 2022;3(4):340–347


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims. Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. Methods. The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety. Results. The results six months postoperatively showed that there were no significant differences in bone regrowth and mineral density between BMC-treated animals and controls. A significant upregulation of messenger RNA (mRNA) for types I and II collagens in the BMC group was observed, but there were no differences in the formation of hyaline-like cartilage between the groups. A trend towards reduced sulphated glycosaminoglycans (sGAG) breakdown was detected in the BMC group but this was not statistically significant. Functional weightbearing was not affected by the inclusion of BMC. Conclusion. Our results indicated that the addition of BMC to scaffold is safe and has some potentially beneficial effects on osteochondral-tissue regeneration, but not on the functional endpoint of orthopaedic interest. Cite this article: Bone Joint Res 2021;10(10):677–689


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. Results. AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). Conclusion. These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650–658


Bone & Joint Open
Vol. 2, Issue 9 | Pages 696 - 704
1 Sep 2021
Malhotra R Gautam D Gupta S Eachempati KK

Aims. Total hip arthroplasty (THA) in patients with post-polio residual paralysis (PPRP) is challenging. Despite relief in pain after THA, pre-existing muscle imbalance and altered gait may cause persistence of difficulty in walking. The associated soft tissue contractures not only imbalances the pelvis, but also poses the risk of dislocation, accelerated polyethylene liner wear, and early loosening. Methods. In all, ten hips in ten patients with PPRP with fixed pelvic obliquity who underwent THA as per an algorithmic approach in two centres from January 2014 to March 2018 were followed-up for a minimum of two years (2 to 6). All patients required one or more additional soft tissue procedures in a pre-determined sequence to correct the pelvic obliquity. All were invited for the latest clinical and radiological assessment. Results. The mean Harris Hip Score at the latest follow-up was 79.2 (68 to 90). There was significant improvement in the coronal pelvic obliquity from 16.6. o. (SD 7.9. o. ) to 1.8. o. (SD 2.4. o. ; p < 0.001). Radiographs of all ten hips showed stable prostheses with no signs of loosening or migration, regardless of whether paralytic or non-paralytic hip was replaced. No complications, including dislocation or infection related to the surgery, were observed in any patient. The subtrochanteric shortening osteotomy done in two patients had united by nine months. Conclusion. Simultaneous correction of soft tissue contractures is necessary for obtaining a stable hip with balanced pelvis while treating hip arthritis by THA in patients with PPRP and fixed pelvic obliquity. Cite this article: Bone Jt Open 2021;2(9):696–704


Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives. Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results. Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions. These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1


Bone & Joint Research
Vol. 9, Issue 6 | Pages 293 - 301
1 Jun 2020
Hexter AT Hing KA Haddad FS Blunn G

Aims. To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. Methods. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization). Results. The pSFT remodelled into a ligament-like structure and no adverse inflammatory reaction was seen. The ground reaction force in the operated leg of the Endobutton group was higher at 11 weeks (p < 0.05). An indirect insertion was seen at the graft-bone interface characterized by Sharpey-like fibres. Qualitative differences in tendon remodelling were seen between the two groups, with greater crimp-like organization and more aligned collagen fibres seen with Endobutton fixation. One graft rupture occurred in the cross-pin group, which histologically showed low collagen organization. Conclusion. Decellularized pSFT xenograft remodels into a ligament-like structure after 12 weeks and regenerates an indirect-type insertion with Sharpey-like fibres. No adverse inflammatory reaction was observed. Cortical suspensory femoral fixation was associated with more enhanced graft remodelling and earlier functional recovery when compared with the stiffer cross-pin fixation


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked UHMWPE inserts was less than half that of standard UHMWPE inserts. Conclusion. Our results showed that increasing conformity may not be the sole predictor of wear performance; highly crosslinked mobile-bearing polyethylene inserts can also provide improvement in wear performance. These results provide improvements in design and materials to reduce wear in mobile-bearing UKA. Cite this article: Bone Joint Res 2019;8:563–569


Bone & Joint Research
Vol. 9, Issue 4 | Pages 182 - 191
1 Apr 2020
D’Ambrosio A Peduzzi L Roche O Bothorel H Saffarini M Bonnomet F

Aims. The diversity of femoral morphology renders femoral component sizing in total hip arthroplasty (THA) challenging. We aimed to determine whether femoral morphology and femoral component filling influence early clinical and radiological outcomes following THA using fully hydroxyapatite (HA)-coated femoral components. Methods. We retrospectively reviewed records of 183 primary uncemented THAs. Femoral morphology, including Dorr classification, canal bone ratio (CBR), canal flare index (CFI), and canal-calcar ratio (CCR), were calculated on preoperative radiographs. The canal fill ratio (CFR) was calculated at different levels relative to the lesser trochanter (LT) using immediate postoperative radiographs: P1, 2 cm above LT; P2, at LT; P3, 2 cm below LT; and D1, 7 cm below LT. At two years, radiological femoral component osseointegration was evaluated using the Engh score, and hip function using the Postel Merle d’Aubigné (PMA) and Oxford Hip Score (OHS). Results. CFR was moderately correlated with CCR at P1 (r = 0.44; p < 0.001), P2 (r = 0.53; p < 0.001), and CFI at P1 (r = − 0.56; p < 0.001). Absence of spot welds (n = 3, 2%) was associated with lower CCR (p = 0.049), greater CFI (p = 0.017), and lower CFR at P3 (p = 0.015). Migration (n = 9, 7%) was associated with lower CFR at P2 (p = 0.028) and P3 (p = 0.007). Varus malalignment (n = 7, 5%), predominantly in Dorr A femurs (p = 0.028), was associated with lower CFR at all levels (p < 0.05). Absence of spot welds was associated with lower PMA gait (p = 0.012) and migration with worse OHS (p = 0.032). Conclusion. This study revealed that femurs with insufficient proximal filling tend to have less favourable radiological outcomes following uncemented THA using a fully HA-coated double-tapered femoral component. Cite this article: Bone Joint Res. 2020;9(4):182–191


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1190 - 1196
1 Oct 2024
Gelfer Y McNee AE Harris JD Mavrotas J Deriu L Cashman J Wright J Kothari A

Aims

The aim of this study was to gain a consensus for best practice of the assessment and management of children with idiopathic toe walking (ITW) in order to provide a benchmark for practitioners and guide the best consistent care.

Methods

An established Delphi approach with predetermined steps and degree of agreement based on a standardized protocol was used to determine consensus. The steering group members and Delphi survey participants included members from the British Society of Children’s Orthopaedic Surgery (BSCOS) and the Association of Paediatric Chartered Physiotherapists (APCP). The statements included definition, assessment, treatment indications, nonoperative and operative interventions, and outcomes. Descriptive statistics were used for analysis of the Delphi survey results. The AGREE checklist was followed for reporting the results.


Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs. Results. Conforming increased design showed a lower contact stress and increased contact area. In addition, increased conformity resulted in a reduction of the wear rate and volumetric wear. However, the increased conformity design showed limited kinematics. Conclusion. Our results indicated that increased conformity provided improvements in wear but resulted in limited kinematics. Therefore, increased conformity should be avoided in fixed-bearing patient-specific UKA design. We recommend a flat or plateau AM tibial insert design in patient-specific UKA. Cite this article: Y-G. Koh, K-M. Park, H-Y. Lee, K-T. Kang. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 2019;8:156–164. DOI: 10.1302/2046-3758.83.BJR-2018-0193.R1


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims

We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry.

Methods

In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 776 - 784
19 Sep 2024
Gao J Chai N Wang T Han Z Chen J Lin G Wu Y Bi L

Aims

In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance.

Methods

A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims

This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients.

Methods

A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims

This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry.

Methods

In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups.


Bone & Joint Open
Vol. 5, Issue 6 | Pages 499 - 513
20 Jun 2024
Keene DJ Achten J Forde C Png ME Grant R Draper K Appelbe D Tutton E Peckham N Dutton SJ Lamb SE Costa ML

Aims

Ankle fractures are common, mainly affecting adults aged 50 years and over. To aid recovery, some patients are referred to physiotherapy, but referral patterns vary, likely due to uncertainty about the effectiveness of this supervised rehabilitation approach. To inform clinical practice, this study will evaluate the effectiveness of supervised versus self-directed rehabilitation in improving ankle function for older adults with ankle fractures.

Methods

This will be a multicentre, parallel-group, individually randomized controlled superiority trial. We aim to recruit 344 participants aged 50 years and older with an ankle fracture treated surgically or non-surgically from at least 20 NHS hospitals. Participants will be randomized 1:1 using a web-based service to supervised rehabilitation (four to six one-to-one physiotherapy sessions of tailored advice and prescribed home exercise over three months), or self-directed rehabilitation (provision of advice and exercise materials that participants will use to manage their recovery independently). The primary outcome is participant-reported ankle-related symptoms and function six months after randomization, measured by the Olerud and Molander Ankle Score. Secondary outcomes at two, four, and six months measure health-related quality of life, pain, physical function, self-efficacy, exercise adherence, complications, and resource use. Due to the nature of the interventions, participants and intervention providers will be unblinded to treatment allocation.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 628 - 635
22 Aug 2023
Hedlundh U Karlsson J Sernert N Haag L Movin T Papadogiannakis N Kartus J

Aims

A revision for periprosthetic joint infection (PJI) in total hip arthroplasty (THA) has a major effect on the patient’s quality of life, including walking capacity. The objective of this case control study was to investigate the histological and ultrastructural changes to the gluteus medius tendon (GMED) in patients revised due to a PJI, and to compare it with revision THAs without infection performed using the same lateral approach.

Methods

A group of eight patients revised due to a PJI with a previous lateral approach was compared with a group of 21 revised THAs without infection, performed using the same approach. The primary variables of the study were the fibril diameter, as seen in transmission electron microscopy (TEM), and the total degeneration score (TDS), as seen under the light microscope. An analysis of bacteriology, classification of infection, and antibiotic treatment was also performed.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 299 - 305
2 May 2023
Shevenell BE Mackenzie J Fisher L McGrory B Babikian G Rana AJ

Aims

Obesity is associated with an increased risk of hip osteoarthritis, resulting in an increased number of total hip arthroplasties (THAs) performed annually. This study examines the peri- and postoperative outcomes of morbidly obese (MO) patients (BMI ≥ 40 kg/m2) compared to healthy weight (HW) patients (BMI 18.5 to < 25 kg/m2) who underwent a THA using the anterior-based muscle-sparing (ABMS) approach.

Methods

This retrospective cohort study observes peri- and postoperative outcomes of MO and HW patients who underwent a primary, unilateral THA with the ABMS approach. Data from surgeries performed by three surgeons at a single institution was collected from January 2013 to August 2020 and analyzed using Microsoft Excel and Stata 17.0.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims

Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems.

Methods

In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 146 - 157
7 Mar 2023
Camilleri-Brennan J James S McDaid C Adamson J Jones K O'Carroll G Akhter Z Eltayeb M Sharma H

Aims

Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set.

Methods

A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 315 - 328
5 May 2023
De Klerk TC Dounavi DM Hamilton DF Clement ND Kaliarntas KT

Aims

The aim of this study was to determine the effectiveness of home-based prehabilitation on pre- and postoperative outcomes in participants awaiting total knee (TKA) and hip arthroplasty (THA).

Methods

A systematic review with meta-analysis of randomized controlled trials (RCTs) of prehabilitation interventions for TKA and THA. MEDLINE, CINAHL, ProQuest, PubMed, Cochrane Library, and Google Scholar databases were searched from inception to October 2022. Evidence was assessed by the PEDro scale and the Cochrane risk-of-bias (ROB2) tool.


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis. Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20–27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2


Bone & Joint Open
Vol. 4, Issue 11 | Pages 853 - 858
10 Nov 2023
Subbiah Ponniah H Logishetty K Edwards TC Singer GC

Aims

Metal-on-metal hip resurfacing (MoM-HR) has seen decreased usage due to safety and longevity concerns. Joint registries have highlighted the risks in females, smaller hips, and hip dysplasia. This study aimed to identify if reported risk factors are linked to revision in a long-term follow-up of MoM-HR performed by a non-designer surgeon.

Methods

A retrospective review of consecutive MoM hip arthroplasties (MoM-HRAs) using Birmingham Hip Resurfacing was conducted. Data on procedure side, indication, implant sizes and orientation, highest blood cobalt and chromium ion concentrations, and all-cause revision were collected from local and UK National Joint Registry records.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes.

Cite this article: Bone Jt Open 2024;5(2):94–100.