Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two
Aims. Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and
Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral
Objectives. Preservation of posterior condylar
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
Objectives. Posterior condylar
Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Methods. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike
Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal
Aims. Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips. Methods. In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation,
Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined
Aims. This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). Methods. 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed. Results. The distance from the distal stem tip to the shortest cortical bone showed no statistically significant difference between implants. However, the peak von Mises stress around the distal stem tip was higher with STC than with ATC. In the medial half of the proximal tibial bone: 1) the mean von Mises stress, maximum principal strain, and minimum principal strain were higher with ATC; 2) ATC showed a positive correlation between the distance and mean von Mises stress; 3) ATC showed a negative correlation between the distance and mean minimum principal strain; and 4) STC showed no correlation between the distance and mean measurements. Conclusion. Implant design affects the load distribution on the periprosthetic tibial bone, and ATC can be more advantageous in preventing stress-shielding than STC. However, under certain circumstances with short distances, the advantage of ATC may be
Aims. To develop a core outcome set of measurements from postoperative radiographs that can be used to assess technical skill in performing dynamic hip screw (DHS) and hemiarthroplasty, and to validate these against Van der Vleuten’s criteria for effective assessment. Methods. A Delphi exercise was undertaken at a regional major trauma centre to identify candidate measurement items. The feasibility of taking these measurements was tested by two of the authors (HKJ, GTRP). Validity and reliability were examined using the radiographs of operations performed by orthopaedic resident participants (n = 28) of a multicentre randomized controlled educational trial (ISRCTN20431944). Trainees were divided into novice and intermediate groups, defined as having performed < ten or ≥ ten cases each for DHS and hemiarthroplasty at baseline. The procedure-based assessment (PBA) global rating score was assumed as the gold standard assessment for the purposes of concurrent validity. Intra- and inter-rater reliability testing were performed on a random subset of 25 cases. Results. In total, 327 DHS and 248 hemiarthroplasty procedures were performed by 28 postgraduate year (PGY) 3 to 5 orthopaedic trainees during the 2014 to 2015 surgical training year at nine NHS hospitals in the West Midlands, UK. Overall, 109 PBAs were completed for DHS and 80 for hemiarthroplasty. Expert consensus identified four ‘final product analysis’ (FPA) radiological parameters of technical success for DHS: tip-apex distance (TAD); lag screw position in the femoral head; flushness of the plate against the lateral femoral cortex; and eight-cortex hold of the plate screws. Three parameters were identified for hemiarthroplasty: leg length discrepancy; femoral stem alignment; and femoral
Aims. The aim of this study was to compare the design of the generic
OptiStem XTR femoral stem with the established Exeter femoral stem. Materials and Methods. We obtained five boxed, as manufactured, implants of both designs
at random (ten in total). Two examiners were blinded to the implant
design and independently measured the mass, volume, trunnion surface
topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal
(CCD) angle, femoral
Objectives. Insufficient protein ingestion may affect muscle and bone mass, increasing the risk of osteoporotic fractures in the elderly, and especially in postmenopausal women. We evaluated how a low-protein diet affects bone parameters under gonadal hormone deficiency and the improvement led by hormone replacement therapy (HRT) with 17β-oestradiol. Methods. Female Wistar rats were divided into control (C), ovariectomized (OVX), and 17β-oestradiol-treated ovariectomized (OVX-HRT) groups, which were fed a control or an isocaloric low-protein diet (LP; 6.6% protein; seven animals per group). Morphometric, serum, and body composition parameters were assessed, as well as bone parameters, mechanical resistance, and mineralogy. Results. The results showed that protein restriction negatively affected body chemical composition and bone metabolism by the sex hormone deficiency condition in the OVX group. The association between undernutrition and hormone deficiency led to bone and muscle mass loss and increased the fragility of the bone (as well as decreasing relative femoral weight, bone mineral density, femoral elasticity, peak stress, and stress at
In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes. A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.Aims
Methods
Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).Aims
Methods
Post-traumatic periprosthetic acetabular fractures are rare but serious. Few studies carried out on small cohorts have reported them in the literature. The aim of this work is to describe the specific characteristics of post-traumatic periprosthetic acetabular fractures, and the outcome of their surgical treatment in terms of function and complications. Patients with this type of fracture were identified retrospectively over a period of six years (January 2016 to December 2021). The following data were collected: demographic characteristics, date of insertion of the prosthesis, details of the intervention, date of the trauma, characteristics of the fracture, and type of treatment. Functional results were assessed with the Harris Hip Score (HHS). Data concerning complications of treatment were collected.Aims
Methods
United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and osseointegration following treatment of THA UCS B2 and B3 periprosthetic fractures. A retrospective review was conducted of all patients who underwent revision THA (rTHA) for periprosthetic UCS B2 and B3 periprosthetic fracture who received a single design monoblock fluted tapered titanium stem at two large, tertiary care, academic hospitals. A total of 72 patients met inclusion and exclusion criteria (68 UCS B2, and four UCS B3 fractures). Primary outcomes of interest were radiological stem subsidence (> 5 mm), radiological osseointegration, and fracture union. Sub-analysis was also done for 46 patients with minimum one-year follow-up.Aims
Methods
To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture. This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty).Aims
Methods
Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m2 (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples Aims
Methods
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods
In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.Aims
Methods
Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction.Aims
Methods
Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.Aims
Methods
We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements.Aims
Methods
The liner design is a key determinant of the constraint of a reverse total shoulder arthroplasty (rTSA). The aim of this study was to compare the degree of constraint of rTSA liners between different implant systems. An implant company’s independent 3D shoulder arthroplasty planning software (mediCAD 3D shoulder v. 7.0, module v. 2.1.84.173.43) was used to determine the jump height of standard and constrained liners of different sizes (radius of curvature) of all available companies. The obtained parameters were used to calculate the stability ratio (degree of constraint) and angle of coverage (degree of glenosphere coverage by liner) of the different systems. Measurements were independently performed by two raters, and intraclass correlation coefficients were calculated to perform a reliability analysis. Additionally, measurements were compared with parameters provided by the companies themselves, when available, to ensure validity of the software-derived measurements.Aims
Methods
Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.Aims
Methods
The risk factors for abnormal spinopelvic mobility (SPM), defined as an anterior rotation of the spinopelvic tilt (∆SPT) ≥ 20° in a flexed-seated position, have been described. The implication of pelvic incidence (PI) is unclear, and the concept of lumbar lordosis (LL) based on anatomical limits may be erroneous. The distribution of LL, including a unusual shape in patients with a high lordosis, a low pelvic incidence, and an anteverted pelvis seems more relevant. The clinical data of 311 consecutive patients who underwent total hip arthroplasty was retrospectively analyzed. We analyzed the different types of lumbar shapes that can present in patients to identify their potential associations with abnormal pelvic mobility, and we analyzed the potential risk factors associated with a ∆SPT ≥ 20° in the overall population.Aims
Methods
The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection. We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.Aims
Methods
The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.Aims
Methods
This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry. In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups.Aims
Methods
Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.Aims
Methods
In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance. A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.Aims
Methods
The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.Aims
Methods
Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems. In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years.Aims
Methods
This study was performed to investigate the association between the acetabular morphology and the joint space narrowing rate (JSNR) in the non-arthritic hip. We retrospectively reviewed standing whole-leg radiographs of patients who underwent knee arthroplasty from February 2012 to March 2020 at our institute. Patients with a history of hip surgery, Kellgren-Lawrence grade ≥ II hip osteoarthritis, or rheumatoid arthritis were excluded. The hip JSNR was measured, and the normalized JSNR (nJSNR) was calculated by calibrating the joint space width with the size of the femoral head in 395 patients (790 hips) with a mean age of 73.7 years (SD 8.6). The effects of the lateral centre-edge angle (CEA) and acetabular roof obliquity (ARO) in the standing and supine positions were examined using a multivariate regression model.Aims
Methods
The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.Aims
Methods
To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.Aims
Methods
Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements.Aims
Methods
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.Aims
Methods
Two-stage exchange revision total hip arthroplasty (THA) performed in case of periprosthetic joint infection (PJI) has been considered for many years as being the gold standard for the treatment of chronic infection. However, over the past decade, there have been concerns about its safety and its effectiveness. The purposes of our study were to investigate our practice, collecting the overall spacer complications, and then to analyze their risk factors. We retrospectively included 125 patients with chronic hip PJI who underwent a staged THA revision performed between January 2013 and December 2019. All spacer complications were systematically collected, and risk factors were analyzed. Statistical evaluations were performed using the Student's Aims
Methods
Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems. We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.Aims
Methods
To estimate the potential cost-effectiveness of adalimumab compared with standard care alone for the treatment of early-stage Dupuytren’s disease (DD) and the value of further research from an NHS perspective. We used data from the Repurposing anti-TNF for Dupuytren’s disease (RIDD) randomized controlled trial of intranodular adalimumab injections in patients with early-stage progressive DD. RIDD found that intranodular adalimumab injections reduced nodule hardness and size in patients with early-stage DD, indicating the potential to control disease progression. A within-trial cost-utility analysis compared four adalimumab injections with no further treatment against standard care alone, taking a 12-month time horizon and using prospective data on EuroQol five-dimension five-level questionnaire (EQ-5D-5L) and resource use from the RIDD trial. We also developed a patient-level simulation model similar to a Markov model to extrapolate trial outcomes over a lifetime using data from the RIDD trial and a literature review. This also evaluated repeated courses of adalimumab each time the nodule reactivated (every three years) in patients who initially responded.Aims
Methods
Patients with A1 and A2 trochanteric hip fractures represent a substantial proportion of trauma caseload, and national guidelines recommend that sliding hip screws (SHS) should be used for these injuries. Despite this, intramedullary nails (IMNs) are routinely implanted in many hospitals, at extra cost and with unproven patient outcome benefit. We have used data from the National Hip Fracture Database (NHFD) to examine the use of SHS and IMN for A1 and A2 hip fractures at a national level, and to define the cost implications of management decisions that run counter to national guidelines. We used the NHFD to identify all operations for fixation of trochanteric fractures in England and Wales between 1 January 2021 and 31 December 2021. A uniform price band from each of three hip fracture implant manufacturers was used to set cost implications alongside variation in implant use.Aims
Methods
Despite multiple trials and case series on hip hemiarthroplasty designs, guidance is still lacking on which implant to use. One particularly deficient area is long-term outcomes. We present over 1,000 consecutive cemented Thompson’s hemiarthroplasties over a ten-year period, recording all accessible patient and implant outcomes. Patient identifiers for a consecutive cohort treated between 1 January 2003 and 31 December 2011 were linked to radiographs, surgical notes, clinic letters, and mortality data from a national dataset. This allowed charting of their postoperative course, complications, readmissions, returns to theatre, revisions, and deaths. We also identified all postoperative attendances at the Emergency and Outpatient Departments, and recorded any subsequent skeletal injuries.Aims
Methods
Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA). This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made. Micromotion of the femoral and tibial components was assessed using model-based RSA software (RSAcore). The clinical outcome was evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (pain and satisfaction).Aims
Methods
Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability. Cite this article: