Advertisement for orthosearch.org.uk
Results 1 - 50 of 205
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims. The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures. Methods. A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis. Results. Of 170 patients, 22 (13%) subsequently received a THA. Native hip survival in patients with a step-off ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 94% vs 70% vs 74%). Native hip survival in patients with a gap ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 100% vs 84% vs 78%). Step-off displacement > 2 mm (> 2 to 4 mm hazard ratio (HR) 4.9, > 4 mm HR 5.6) and age > 60 years (HR 2.9) were independent predictors for conversion to THA at follow-up. Conclusion. Patients with minimally displaced acetabular fractures who opt for nonoperative fracture treatment may be informed that fracture displacement (e.g. gap and step-off) up to 2 mm, as measured on CT images, results in limited risk on conversion to THA. Step-off ≥ 2 mm and age > 60 years are predictors for conversion to THA and can be helpful in the shared decision-making process. Cite this article: Bone Joint J 2023;105-B(9):1020–1029


Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims. The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Methods. Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress. Results. A total of 144 discs were categorized as ‘positive’ and 174 discs as ‘negative’ by the results of provocation discography. The presence of defined facet tropism (OR 3.451, 95% CI 1.944 to 6.126) and higher Adams classification (OR 2.172, 95% CI 1.523 to 3.097) were important predictive parameters for discography-‘positive’ discs. FEM simulations showcased uneven stress distribution and significant disc displacement in tropism-affected discs, where loading exacerbated stress on facets with greater angles. During varied positions, notably increased stress and displacement were observed in discs with tropism compared to those with normal facet structure. Conclusion. Our findings indicate that facet tropism can contribute to disc herniation and changes in intradiscal pressure, potentially exacerbating disc degeneration due to altered force distribution and increased mechanical stress. Cite this article: Bone Joint Res 2024;13(9):452–461


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


Bone & Joint Open
Vol. 3, Issue 6 | Pages 502 - 509
20 Jun 2022
James HK Griffin J Pattison GTR

Aims. To identify a core outcome set of postoperative radiographic measurements to assess technical skill in ankle fracture open reduction internal fixation (ORIF), and to validate these against Van der Vleuten’s criteria for effective assessment. Methods. An e-Delphi exercise was undertaken at a major trauma centre (n = 39) to identify relevant parameters. Feasibility was tested by two authors. Reliability and validity was tested using postoperative radiographs of ankle fracture operations performed by trainees enrolled in an educational trial (IRCTN 20431944). To determine construct validity, trainees were divided into novice (performed < ten cases at baseline) and intermediate groups (performed ≥ ten cases at baseline). To assess concurrent validity, the procedure-based assessment (PBA) was considered the gold standard. The inter-rater and intrarater reliability was tested using a randomly selected subset of 25 cases. Results. Overall, 235 ankle ORIFs were performed by 24 postgraduate year three to five trainees during ten months at nine NHS hospitals in England, UK. Overall, 42 PBAs were completed. The e-Delphi panel identified five ‘final product analysis’ parameters and defined acceptability thresholds: medial clear space (MCS); medial malleolar displacement (MMD); lateral malleolar displacement (LMD); tibiofibular clear space (TFCS) (all in mm); and talocrural angle (TCA) in degrees. Face validity, content validity, and feasibility were excellent. PBA global rating scale scores in this population showed excellent construct validity as continuous (p < 0.001) and categorical (p = 0.001) variables. Concurrent validity of all metrics was poor against PBA score. Intrarater reliability was substantial for all parameters (intraclass correlation coefficient (ICC) > 0.8), and inter-rater reliability was substantial for LMD, MMD, TCA, and moderate (ICC 0.61 to 0.80) for MCS and TFCS. Assessment was time efficient compared to PBA. Conclusion. Assessment of technical skill in ankle fracture surgery using the first postoperative radiograph satisfies the tested Van der Vleuten’s utility criteria for effective assessment. 'Final product analysis' assessment may be useful to assess skill transfer in the simulation-based research setting. Cite this article: Bone Jt Open 2022;3(6):502–509


Bone & Joint Open
Vol. 2, Issue 9 | Pages 752 - 756
1 Sep 2021
Kabariti R Green N Turner R

Aims. During the COVID-19 pandemic, drilling has been classified as an aerosol-generating procedure. However, there is limited evidence on the effects of bone drilling on splatter generation. Our aim was to quantify the effect of drilling on splatter generation within the orthopaedic operative setting. Methods. This study was performed using a Stryker System 7 dual rotating drill at full speed. Two fluid mediums (Videne (Solution 1) and Fluorescein (Solution 2)) were used to simulate drill splatter conditions. Drilling occurred at saw bone level (0 cm) and at different heights (20 cm, 50 cm, and 100 cm) above the target to simulate the surgeon ‘working arm length’, with and without using a drill guide. The furthest droplets were marked and the droplet displacement was measured in cm. A surgical microscope was used to detect microscopic droplets. Results. Bone drilling produced 5 cm and 7 cm droplet displacement using Solutions 1 and 2, respectively. Drilling at 100 cm above the target produced the greatest splatter generation with a 95 cm macroscopic droplet displacement using Solution 2. Microscopic droplet generation was noticed at further distances than what can be macroscopically seen using Solution 1 (98 cm). Using the drill guide, there was negligible drill splatter generation. Conclusion. Our study has shown lower than anticipated drill splatter generation. The use of a drill guide acted as a protective measure and significantly reduced drill splatter. We therefore recommend using a drill guide at all times to reduce the risk of viral transmission in the operative setting. Cite this article: Bone Jt Open 2021;2(9):752–756


Bone & Joint Open
Vol. 5, Issue 8 | Pages 652 - 661
8 Aug 2024
Taha R Davis T Montgomery A Karantana A

Aims. The aims of this study were to describe the epidemiology of metacarpal shaft fractures (MSFs), assess variation in treatment and complications following standard care, document hospital resource use, and explore factors associated with treatment modality. Methods. A multicentre, cross-sectional retrospective study of MSFs at six centres in the UK. We collected and analyzed healthcare records, operative notes, and radiographs of adults presenting within ten days of a MSF affecting the second to fifth metacarpal between 1 August 2016 and 31 July 2017. Total emergency department (ED) attendances were used to estimate prevalence. Results. A total of 793 patients (75% male, 25% female) with 897 MSFs were included, comprising 0.1% of 837,212 ED attendances. The annual incidence of MSF was 40 per 100,000. The median age was 27 years (IQR 21 to 41); the highest incidence was in men aged 16 to 24 years. Transverse fractures were the most common. Over 80% of all fractures were treated non-surgically, with variation across centres. Overall, 12 types of non-surgical and six types of surgical treatment were used. Fracture pattern, complexity, displacement, and age determined choice of treatment. Patients who were treated surgically required more radiographs and longer radiological and outpatient follow-up, and were more likely to be referred for therapy. Complications occurred in 5% of patients (39/793). Most patients attended planned follow-up, with 20% (160/783) failing to attend at least one or more clinic appointments. Conclusion. MSFs are common hand injuries among young, working (economically active) men, but there is considerable heterogeneity in treatment, rehabilitation, and resource use. They are a burden on healthcare resources and society, thus further research is needed to optimize treatment. Cite this article: Bone Jt Open 2024;5(8):652–661


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


Bone & Joint Research
Vol. 9, Issue 12 | Pages 840 - 847
1 Dec 2020
Nie S Li M Ji H Li Z Li W Zhang H Licheng Z Tang P

Aims. Restoration of proximal medial femoral support is the keystone in the treatment of intertrochanteric fractures. None of the available implants are effective in constructing the medial femoral support. Medial sustainable nail (MSN-II) is a novel cephalomedullary nail designed for this. In this study, biomechanical difference between MSN-II and proximal femoral nail anti-rotation (PFNA-II) was compared to determine whether or not MSN-II can effectively reconstruct the medial femoral support. Methods. A total of 36 synthetic femur models with simulated intertrochanteric fractures without medial support (AO/OTA 31-A2.3) were assigned to two groups with 18 specimens each for stabilization with MSN-II or PFNA-II. Each group was further divided into three subgroups of six specimens according to different experimental conditions respectively as follows: axial loading test; static torsional test; and cyclic loading test. Results. The mean axial stiffness, vertical displacement, and maximum failure load of MSN-II were 258.47 N/mm (SD 42.27), 2.99 mm (SD 0.56), and 4,886 N (SD 525.31), respectively, while those of PFNA-II were 170.28 N/mm (SD 64.63), 4.86 mm (SD 1.66), and 3,870.87 N (SD 552.21), respectively. The mean torsional stiffness and failure torque of MSN-II were 1.72 N m/° (SD 0.61) and 16.54 N m (SD 7.06), respectively, while those of PFNA-II were 0.61 N m/° (SD 0.39) and 6.6 N m (SD 6.65), respectively. The displacement of MSN-II in each cycle point was less than that of PFNA-II in cyclic loading test. Significantly higher stiffness and less displacement were detected in the MSN-II group (p < 0.05). Conclusion. The biomechanical performance of MSN-II was better than that of PFNA-II, suggesting that MSN-II may provide more effective mechanical support in the treatment of unstable intertrochanteric fractures. Cite this article: Bone Joint Res 2020;9(12):840–847


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Methods. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits. Results. The patient cohort mean age was 66 years (SD seven years), 59% were female, and the mean BMI was 32 kg/m. 2. (SD 6 kg/m. 2. ). Mean two-year subsidence of the EF-TKA was 0.056 mm (95% confidence interval (CI) 0.025 to 0.086) versus 0.006 mm (95% CI -0.029 to 0.040) for the Std-TKA, and the two-year maximum total point motion (MTPM) was 0.285 mm (95% upper confidence limit (UCL) ≤ 0.363) versus 0.346 mm (95% UCL ≤ 0.432), respectively, for a mean difference of -0.061 mm (95% CI -0.196 to 0.074). Inducible displacement also did not differ between groups. The MTPMs between 12 and 24 months for each group was below the published threshold of 0.2 mm for predicting early aseptic loosening (p < 0.001 and p = 0.001, respectively). Conclusion. Both the enhanced fixation and the standard tibial implant design showed fixation with a predicted low risk of long-term aseptic loosening. Cite this article: Bone Jt Open 2024;5(1):20–27


Bone & Joint Research
Vol. 12, Issue 8 | Pages 504 - 511
23 Aug 2023
Wang C Liu S Chang C

Aims. This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model. Methods. A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis. Results. This biomechanical study predicts that headless screw fixation is a better option if fragment thickness is over 15 mm in terms of the comparable peak failure load to suture anchor fixation (headless screw: 432.55 N (SD 62.25); suture anchor: 446.58 N (SD 84.97)), and less fracture fragment displacement after cyclic loading (headless screw: 3.94 N (SD 1.76); suture anchor: 8.68 N (SD 1.84)). Given that the fragment thickness is less than 10 mm, suture anchor fixation is a safer option. Conclusion. Fracture fragment thickness helps in making the decision of either using headless screw or suture anchor fixation in treating calcaneal tuberosity avulsion fracture, based on the regression models of our study. Cite this article: Bone Joint Res 2023;12(8):504–511


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on fracture healing by generating standardized micromotion to small animal models. Cite this article: Bone Joint Res 2021;10(11):714–722


Bone & Joint Research
Vol. 5, Issue 6 | Pages 269 - 275
1 Jun 2016
Ono Y Woodmass JM Nelson AA Boorman RS Thornton GM Lo IKY

Objectives. This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Methods. Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’. Results. In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed ‘suture cutting through bone’ as the predominant source of suture displacement in cadaveric bone (qualitative) and greater ‘suture cutting through bone’ comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Conclusions. Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone. Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269–275. DOI: 10.1302/2046-3758.56.2000535


Bone & Joint Research
Vol. 10, Issue 2 | Pages 113 - 121
1 Feb 2021
Nicholson JA Oliver WM MacGillivray TJ Robinson CM Simpson AHRW

Aims. To evaluate if union of clavicle fractures can be predicted at six weeks post-injury by the presence of bridging callus on ultrasound. Methods. Adult patients managed nonoperatively with a displaced mid-shaft clavicle were recruited prospectively. Ultrasound evaluation of the fracture was undertaken to determine if sonographic bridging callus was present. Clinical risk factors at six weeks were used to stratify patients at high risk of nonunion with a combination of Quick Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) ≥ 40, fracture movement on examination, or absence of callus on radiograph. Results. A total of 112 patients completed follow-up at six months with a nonunion incidence of 16.7% (n = 18/112). Sonographic bridging callus was detected in 62.5% (n = 70/112) of the cohort at six weeks post-injury. If present, union occurred in 98.6% of the fractures (n = 69/70). If absent, nonunion developed in 40.5% of cases (n = 17/42). The sensitivity to predict union with sonographic bridging callus at six weeks was 73.4% and the specificity was 94.4%. Regression analysis found that failure to detect sonographic bridging callus at six weeks was associated with older age, female sex, simple fracture pattern, smoking, and greater fracture displacement (Nagelkerke R. 2. = 0.48). Of the cohort, 30.4% (n = 34/112) had absent sonographic bridging callus in addition to one or more of the clinical risk factors at six weeks that predispose to nonunion. If one was present the nonunion rate was 35%, 60% with two, and 100% when combined with all three. Conclusion. Ultrasound combined with clinical risk factors can accurately predict fracture healing at six weeks following a displaced midshaft clavicle fracture. Cite this article: Bone Joint Res 2021;10(2):113–121


Bone & Joint Open
Vol. 1, Issue 9 | Pages 512 - 519
1 Sep 2020
Monzem S Ballester RY Javaheri B Poulet B Sônego DA Pitsillides AA Souza RL

Aims. The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Methods. Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured. Results. Fracture analyses revealed that OVX+IBN significantly reduced yield displacement (vs SHAM/OVX) and resilience, and increased stiffness (vs SHAM). OVX+IBN elevated tibial trabecular parameters and also increased cortical cross-sectional area and second moment of area around minor axis, and diminished ellipticity proximally. Conclusion. These data indicate that combined ovariectomy and bisphosphonate generates cortical changes linked with greater bone brittleness and modified fracture characteristics, which may provide a basis in mice for interrogating the mechanisms and genetics of atypical fracture aetiology. Cite this article: Bone Joint Open 2020;1-9:512–519


Bone & Joint Research
Vol. 6, Issue 2 | Pages 82 - 89
1 Feb 2017
Nagra NS Zargar N Smith RDJ Carr AJ

Objectives. All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. Materials and Methods. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05. Results. Overall, mean maximum tensile strength values were significantly higher for the traditional anchor (181.0 N, standard error (. se). 17.6) compared with the all-suture anchors (mean 133.1 N . se. 16.7) (p = 0.04). The JuggerKnot anchor had greatest displacement at 50, 100 and 150 cycles, and at failure, reaching statistical significance over the control at 100 and 150 cycles (22.6 mm . se. 2.5 versus 12.5 mm . se. 0.3; and 29.6 mm . se. 4.8 versus 17.0 mm . se. 0.7). Every all-suture anchor tested showed substantial (> 5 mm) displacement between 50 and 100 cycles (6.2 to 14.3). All-suture anchors predominantly failed due to anchor pull-out (95% versus 25% of traditional anchors), whereas a higher proportion of traditional anchors failed secondary to suture breakage. Conclusion. We demonstrate decreased failure load, increased total displacement, and variable failure mechanisms in all-suture anchors, compared with traditional anchors designed for rotator cuff repair. These findings will aid the surgeon’s choice of implant, in the context of the clinical scenario. Cite this article: N. S. Nagra, N. Zargar, R. D. J. Smith, A. J. Carr. Mechanical properties of all-suture anchors for rotator cuff repair. Bone Joint Res 2017;6:82–89. DOI: 10.1302/2046-3758.62.BJR-2016-0225.R1


Bone & Joint Open
Vol. 1, Issue 4 | Pages 80 - 87
24 Apr 2020
Passaplan C Gautier L Gautier E

Aims. Our retrospective analysis reports the outcome of patients operated for slipped capital femoral epiphysis using the modified Dunn procedure. Results, complications, and the need for revision surgery are compared with the recent literature. Methods. We retrospectively evaluated 17 patients (18 hips) who underwent the modified Dunn procedure for the treatment of slipped capital femoral epiphysis. Outcome measurement included standardized scores. Clinical assessment included ambulation, leg length discrepancy, and hip mobility. Radiographically, the quality of epiphyseal reduction was evaluated using the Southwick and Alpha-angles. Avascular necrosis, heterotopic ossifications, and osteoarthritis were documented at follow-up. Results. At a mean follow-up of more than nine years, the mean modified Harris Hip score was 88.7 points, the Hip Disability and Osteoarthritis Outcome Score (HOOS) 87.4 , the Merle d’Aubigné Score 16.5 points, and the UCLA Activity Score 8.4. One patient developed a partial avascular necrosis of the femoral head, and one patient already had an avascular necrosis at the time of delayed diagnosis. Two hips developed osteoarthritic signs at 14 and 16 years after the index operation. Six patients needed a total of nine revision surgeries. One operation was needed for postoperative hip subluxation, one for secondary displacement and implant failure, two for late femoroacetabular impingement, one for femoroacetabular impingement of the opposite hip, and four for implant removal. Conclusion. Our series shows good results and is comparable to previous published studies. The modified Dunn procedure allows the anatomic repositioning of the slipped epiphysis. Long-term results with subjective and objective hip function are superior, avascular necrosis and development of osteoarthritis inferior to other reported treatment modalities. Nevertheless, the procedure is technically demanding and revision surgery for secondary femoroacetabular impingement and implant removal are frequent. Cite this article: 2020;1-4:80–87


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 920
18 Nov 2022
Dean BJF Berridge A Berkowitz Y Little C Sheehan W Riley N Costa M Sellon E

Aims

The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist trauma. The aim of this study was to describe the radiological characteristics and the inter-observer reliability of a new MRI based classification system for scaphoid injuries in a consecutive series of patients.

Methods

We identified 80 consecutive patients with acute scaphoid injuries at one centre who had presented within four weeks of injury. The radiographs and MRI scans were assessed by four observers, two radiologists, and two hand surgeons, using both pre-existing classifications and a new MRI based classification tool, the Oxford Scaphoid MRI Assessment Rating Tool (OxSMART). The OxSMART was used to categorize scaphoid injuries into three grades: contusion (grade 1); unicortical fracture (grade 2); and complete bicortical fracture (grade 3).


Aims

Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance.

Methods

We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 471 - 473
1 May 2023
Peterson N Perry DC

Salter-Harris II fractures of the distal tibia affect children frequently, and when they are displaced present a treatment dilemma. Treatment primarily aims to restore alignment and prevent premature physeal closure, as this can lead to angular deformity, limb length difference, or both. Current literature is of poor methodological quality and is contradictory as to whether conservative or surgical management is superior in avoiding complications and adverse outcomes. A state of clinical equipoise exists regarding whether displaced distal tibial Salter-Harris II fractures in children should be treated with surgery to achieve anatomical reduction, or whether cast treatment alone will lead to a satisfactory outcome. Systematic review and meta-analysis has concluded that high-quality prospective multicentre research is needed to answer this question. The Outcomes of Displaced Distal tibial fractures: Surgery Or Casts in KidS (ODD SOCKS) trial, funded by the National Institute for Health and Care Research, aims to provide this high-quality research in order to answer this question, which has been identified as a top-five research priority by the British Society for Children’s Orthopaedic Surgery.

Cite this article: Bone Joint J 2023;105-B(5):471–473.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 433 - 438
1 Jul 2017
Pan M Chai L Xue F Ding L Tang G Lv B

Objectives. The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures. Methods. Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared. Results. The relative displacement of the EFLIF was less than that of the plate (0.1363 mm to 0.1808 mm). The highest von Mises stress value on the plate was 33% higher than that on the EFLIF. A normal restoration of the Böhler angle was achieved in both groups. No significant difference was found in the clinical outcome on the American Orthopedic Foot and Ankle Society Ankle Hindfoot Scale, or on the Visual Analogue Scale between the two groups (p > 0.05). Wound complications were more common in those who were treated with ORIF (p = 0.028). Conclusions. Both EFLIF and ORIF systems were tested to 160 N without failure, showing the new construct to be mechanically safe to use. Both EFLIF and ORIF could be effective in treating Sanders type 2 calcaneal fractures. The EFLIF may be superior to ORIF in achieving biomechanical stability and less blood loss, shorter surgical time and hospital stay, and fewer wound complications. Cite this article: M. Pan, L. Chai, F. Xue, L. Ding, G. Tang, B. Lv. Comparisons of external fixator combined with limited internal fixation and open reduction and internal fixation for Sanders type 2 calcaneal fractures: Finite element analysis and clinical outcome. Bone Joint Res 2017;6:433–438. DOI: 10.1302/2046-3758.67.2000640


Bone & Joint Open
Vol. 5, Issue 1 | Pages 46 - 52
19 Jan 2024
Assink N ten Duis K de Vries JPM Witjes MJH Kraeima J Doornberg JN IJpma FFA

Aims

Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery.

Methods

A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 37 - 45
19 Jan 2024
Alm CE Karlsten A Madsen JE Nordsletten L Brattgjerd JE Pripp AH Frihagen F Röhrl SM

Aims

Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone.

Methods

Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 69 - 77
25 Jan 2024
Achten J Appelbe D Spoors L Peckham N Kandiyali R Mason J Ferguson D Wright J Wilson N Preston J Moscrop A Costa M Perry DC

Aims

The management of fractures of the medial epicondyle is one of the greatest controversies in paediatric fracture care, with uncertainty concerning the need for surgery. The British Society of Children’s Orthopaedic Surgery prioritized this as their most important research question in paediatric trauma. This is the protocol for a randomized controlled, multicentre, prospective superiority trial of operative fixation versus nonoperative treatment for displaced medial epicondyle fractures: the Surgery or Cast of the EpicoNdyle in Children’s Elbows (SCIENCE) trial.

Methods

Children aged seven to 15 years old inclusive, who have sustained a displaced fracture of the medial epicondyle, are eligible to take part. Baseline function using the Patient-Reported Outcomes Measurement Information System (PROMIS) upper limb score, pain measured using the Wong Baker FACES pain scale, and quality of life (QoL) assessed with the EuroQol five-dimension questionnaire for younger patients (EQ-5D-Y) will be collected. Each patient will be randomly allocated (1:1, stratified using a minimization algorithm by centre and initial elbow dislocation status (i.e. dislocated or not-dislocated at presentation to the emergency department)) to either a regimen of the operative fixation or non-surgical treatment.


Bone & Joint Open
Vol. 5, Issue 5 | Pages 411 - 418
20 May 2024
Schneider P Bajammal S Leighton R Witges K Rondeau K Duffy P

Aims

Isolated fractures of the ulnar diaphysis are uncommon, occurring at a rate of 0.02 to 0.04 per 1,000 cases. Despite their infrequency, these fractures commonly give rise to complications, such as nonunion, limited forearm pronation and supination, restricted elbow range of motion, radioulnar synostosis, and prolonged pain. Treatment options for this injury remain a topic of debate, with limited research available and no consensus on the optimal approach. Therefore, this trial aims to compare clinical, radiological, and functional outcomes of two treatment methods: open reduction and internal fixation (ORIF) versus nonoperative treatment in patients with isolated ulnar diaphyseal fractures.

Methods

This will be a multicentre, open-label, parallel randomized clinical trial (under National Clinical Trial number NCT01123447), accompanied by a parallel prospective cohort group for patients who meet the inclusion criteria, but decline randomization. Eligible patients will be randomized to one of the two treatment groups: 1) nonoperative treatment with closed reduction and below-elbow casting; or 2) surgical treatment with ORIF utilizing a limited contact dynamic compression plate and screw construct. The primary outcome measured will be the Disabilities of the Arm, Shoulder and Hand questionnaire score at 12 months post-injury. Additionally, functional outcomes will be assessed using the 36-Item Short Form Health Survey and pain visual analogue scale, allowing for a comparison of outcomes between groups. Secondary outcome measures will encompass clinical outcomes such as range of motion and grip strength, radiological parameters including time to union, as well as economic outcomes assessed from enrolment to 12 months post-injury.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 8 - 13
1 Jan 2017
Acklin YP Zderic I Grechenig S Richards RG Schmitz P Gueorguiev B

Objectives. Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible. The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws. Materials and Methods. A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm. 3. (standard deviation (. sd). 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups. Results. Initial axial construct stiffness was not significantly different between the groups (p = 0.463). Interfragmentary displacement and gap angle at the fracture site were also not statistically significantly different between the groups throughout the evaluated cycles (p ⩾ 0.249). Similarly, cycles to failure were not statistically different between Group 1 (8438, . sd. 6968) and Group 2 (10 213, . sd. 10 334), p = 0.379. Failure mode in both groups was characterised by screw cutting through the cancellous bone. Conclusion. From a biomechanical point of view, pubic ramus stabilisation with either one large or two small fragment screw osteosynthesis is comparable in osteoporotic bone. However, the two-screw fixation technique is less demanding as the smaller screws deflect at the cortical margins. Cite this article: Y. P. Acklin, I. Zderic, S. Grechenig, R. G. Richards, P. Schmitz, B. Gueorguiev. Are two retrograde 3.5 mm screws superior to one 7.3 mm screw for anterior pelvic ring fixation in bones with low bone mineral density? Bone Joint Res 2017;6:8–13. DOI: 10.1302/2046-3758.61.BJR-2016-0261


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


Bone & Joint Research
Vol. 1, Issue 5 | Pages 78 - 85
1 May 2012
Entezari V Della Croce U DeAngelis JP Ramappa AJ Nazarian A Trechsel BL Dow WA Stanton SK Rosso C Müller A McKenzie B Vartanians V Cereatti A

Objectives. Cadaveric models of the shoulder evaluate discrete motion segments using the glenohumeral joint in isolation over a defined trajectory. The aim of this study was to design, manufacture and validate a robotic system to accurately create three-dimensional movement of the upper body and capture it using high-speed motion cameras. Methods. In particular, we intended to use the robotic system to simulate the normal throwing motion in an intact cadaver. The robotic system consists of a lower frame (to move the torso) and an upper frame (to move an arm) using seven actuators. The actuators accurately reproduced planned trajectories. The marker setup used for motion capture was able to determine the six degrees of freedom of all involved joints during the planned motion of the end effector. Results. The testing system demonstrated high precision and accuracy based on the expected versus observed displacements of individual axes. The maximum coefficient of variation for displacement of unloaded axes was less than 0.5% for all axes. The expected and observed actual displacements had a high level of correlation with coefficients of determination of 1.0 for all axes. Conclusions. Given that this system can accurately simulate and track simple and complex motion, there is a new opportunity to study kinematics of the shoulder under normal and pathological conditions in a cadaveric shoulder model


Bone & Joint Open
Vol. 3, Issue 11 | Pages 850 - 858
2 Nov 2022
Khoriati A Fozo ZA Al-Hilfi L Tennent D

Aims

The management of mid-shaft clavicle fractures (MSCFs) has evolved over the last three decades. Controversy exists over which specific fracture patterns to treat and when. This review aims to synthesize the literature in order to formulate an appropriate management algorithm for these injuries in both adolescents and adults.

Methods

This is a systematic review of clinical studies comparing the outcomes of operative and nonoperative treatments for MSCFs in the past 15 years. The literature was searched using, PubMed, Google scholar, OVID Medline, and Embase. All databases were searched with identical search terms: mid-shaft clavicle fractures (± fixation) (± nonoperative).


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes.

Cite this article: Bone Jt Open 2024;5(2):94–100.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 363 - 369
22 May 2023
Amen J Perkins O Cadwgan J Cooke SJ Kafchitsas K Kokkinakis M

Aims

Reimers migration percentage (MP) is a key measure to inform decision-making around the management of hip displacement in cerebral palsy (CP). The aim of this study is to assess validity and inter- and intra-rater reliability of a novel method of measuring MP using a smart phone app (HipScreen (HS) app).

Methods

A total of 20 pelvis radiographs (40 hips) were used to measure MP by using the HS app. Measurements were performed by five different members of the multidisciplinary team, with varying levels of expertise in MP measurement. The same measurements were repeated two weeks later. A senior orthopaedic surgeon measured the MP on picture archiving and communication system (PACS) as the gold standard and repeated the measurements using HS app. Pearson’s correlation coefficient (r) was used to compare PACS measurements and all HS app measurements and assess validity. Intraclass correlation coefficient (ICC) was used to assess intra- and inter-rater reliability.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 38 - 46
17 Jan 2023
Takami H Takegami Y Tokutake K Kurokawa H Iwata M Terasawa S Oguchi T Imagama S

Aims

The objectives of this study were to investigate the patient characteristics and mortality of Vancouver type B periprosthetic femoral fractures (PFF) subgroups divided into two groups according to femoral component stability and to compare postoperative clinical outcomes according to treatment in Vancouver type B2 and B3 fractures.

Methods

A total of 126 Vancouver type B fractures were analyzed from 2010 to 2019 in 11 associated centres' database (named TRON). We divided the patients into two Vancouver type B subtypes according to implant stability. Patient demographics and functional scores were assessed in the Vancouver type B subtypes. We estimated the mortality according to various patient characteristics and clinical outcomes between the open reduction internal fixation (ORIF) and revision arthroplasty (revision) groups in patients with unstable subtype.


Bone & Joint Open
Vol. 4, Issue 12 | Pages 914 - 922
1 Dec 2023
Sang W Qiu H Xu Y Pan Y Ma J Zhu L

Aims

Unicompartmental knee arthroplasty (UKA) is the preferred treatment for anterior medial knee osteoarthritis (OA) owing to the rapid postoperative recovery. However, the risk factors for UKA failure remain controversial.

Methods

The clinical data of Oxford mobile-bearing UKAs performed between 2011 and 2017 with a minimum follow-up of five years were retrospectively analyzed. Demographic, surgical, and follow-up data were collected. The Cox proportional hazards model was used to identify the risk factors that contribute to UKA failure. Kaplan-Meier survival was used to compare the effect of the prosthesis position on UKA survival.


Bone & Joint Open
Vol. 3, Issue 12 | Pages 953 - 959
23 Dec 2022
Raval P See A Singh HP

Aims

Distal third clavicle (DTC) fractures are increasing in incidence. Due to their instability and nonunion risk, they prove difficult to treat. Several different operative options for DTC fixation are reported but current evidence suggests variability in operative fixation. Given the lack of consensus, our objective was to determine the current epidemiological trends in DTC as well as their management within the UK.

Methods

A multicentre retrospective cohort collaborative study was conducted. All patients over the age of 18 with an isolated DTC fracture in 2019 were included. Demographic variables were recorded: age; sex; side of injury; mechanism of injury; modified Neer classification grading; operative technique; fracture union; complications; and subsequent procedures. Baseline characteristics were described for demographic variables. Categorical variables were expressed as frequencies and percentages.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims

The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods

In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 252 - 259
28 Mar 2024
Syziu A Aamir J Mason LW

Aims

Posterior malleolar (PM) fractures are commonly associated with ankle fractures, pilon fractures, and to a lesser extent tibial shaft fractures. The tibialis posterior (TP) tendon entrapment is a rare complication associated with PM fractures. If undiagnosed, TP entrapment is associated with complications, ranging from reduced range of ankle movement to instability and pes planus deformities, which require further surgeries including radical treatments such as arthrodesis.

Methods

The inclusion criteria applied in PubMed, Scopus, and Medline database searches were: all adult studies published between 2012 and 2022; and studies written in English. Outcome of TP entrapment in patients with ankle injuries was assessed by two reviewers independently.


Bone & Joint Open
Vol. 5, Issue 5 | Pages 385 - 393
13 May 2024
Jamshidi K Toloue Ghamari B Ammar W Mirzaei A

Aims

Ilium is the most common site of pelvic Ewing’s sarcoma (ES). Resection of the ilium and iliosacral joint causes pelvic disruption. However, the outcomes of resection and reconstruction are not well described. In this study, we report patients’ outcomes after resection of the ilium and iliosacral ES and reconstruction with a tibial strut allograft.

Methods

Medical files of 43 patients with ilium and iliosacral ES who underwent surgical resection and reconstruction with a tibial strut allograft between January 2010 and October 2021 were reviewed. The lesions were classified into four resection zones: I1, I2, I3, and I4, based on the extent of resection. Functional outcomes, oncological outcomes, and surgical complications for each resection zone were of interest. Functional outcomes were assessed using a Musculoskeletal Tumor Society (MSTS) score and Toronto Extremity Salvage Score (TESS).


Aims

For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis.

Methods

We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 168 - 181
14 Mar 2023
Dijkstra H Oosterhoff JHF van de Kuit A IJpma FFA Schwab JH Poolman RW Sprague S Bzovsky S Bhandari M Swiontkowski M Schemitsch EH Doornberg JN Hendrickx LAM

Aims

To develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials.

Methods

This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.4% (153/2,388), respectively. The mean age was 75.9 years (SD 10.8) and 65.9% of patients (1,574/2,388) were female. The algorithms included patient and injury characteristics. Six algorithms were developed, internally validated and evaluated across discrimination (c-statistic; discriminative ability between those with risk of mortality and those without), calibration (observed outcome compared to the predicted probability), and the Brier score (composite of discrimination and calibration).


Bone & Joint Research
Vol. 1, Issue 6 | Pages 118 - 124
1 Jun 2012
Grawe B Le T Williamson S Archdeacon A Zardiackas L

Objectives. We aimed to further evaluate the biomechanical characteristics of two locking screws versus three standard bicortical screws in synthetic models of normal and osteoporotic bone. Methods. Synthetic tubular bone models representing normal bone density and osteoporotic bone density were used. Artificial fracture gaps of 1 cm were created in each specimen before fixation with one of two constructs: 1) two locking screws using a five-hole locking compression plate (LCP) plate; or 2) three non-locking screws with a seven-hole LCP plate across each side of the fracture gap. The stiffness, maximum displacement, mode of failure and number of cycles to failure were recorded under progressive cyclic torsional and eccentric axial loading. Results. Locking plates in normal bone survived 10% fewer cycles to failure during cyclic axial loading, but there was no significant difference in maximum displacement or failure load. Locking plates in osteoporotic bone showed less displacement (p = 0.02), but no significant difference in number of cycles to failure or failure load during cyclic axial loading (p = 0.46 and p = 0.25, respectively). Locking plates in normal bone had lower stiffness and torque during torsion testing (both p = 0.03), but there was no significant difference in rotation (angular displacement) (p = 0.84). Locking plates in osteoporotic bone showed lower torque and rotation (p = 0.008), but there was no significant difference in stiffness during torsion testing (p = 0.69). Conclusions. The mechanical performance of locking plate constructs, using only two screws, is comparable to three non-locking screw constructs in osteoporotic bone. Normal bone loaded with either an axial or torsional moment showed slightly better performance with the non-locking construct


Bone & Joint Open
Vol. 3, Issue 10 | Pages 841 - 849
27 Oct 2022
Knight R Keene DJ Dutton SJ Handley R Willett K

Aims

The rationale for exacting restoration of skeletal anatomy after unstable ankle fracture is to improve outcomes by reducing complications from malunion; however, current definitions of malunion lack confirmatory clinical evidence.

Methods

Radiological (absolute radiological measurements aided by computer software) and clinical (clinical interpretation of radiographs) definitions of malunion were compared within the Ankle Injury Management (AIM) trial cohort, including people aged ≥ 60 years with an unstable ankle fracture. Linear regressions were used to explore the relationship between radiological malunion (RM) at six months and changes in function at three years. Function was assessed with the Olerud-Molander Ankle Score (OMAS), with a minimal clinically important difference set as six points, as per the AIM trial. Piecewise linear models were used to investigate new radiological thresholds which better explain symptom impact on ankle function.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims

The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison.

Methods

A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 117 - 122
9 Feb 2024
Chaturvedi A Russell H Farrugia M Roger M Putti A Jenkins PJ Feltbower S

Aims

Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work. Suboptimal management can result in significant disability and, frequently, litigation.

Methods

We present a service evaluation report following the introduction of a quality-improvement themed, streamlined, clinical scaphoid pathway. Patients are offered a removable wrist splint with verbal and written instructions to remove it two weeks following injury, for self-assessment. The persistence of pain is the patient’s guide to ‘opt-in’ and to self-refer for a follow-up appointment with a senior emergency physician. On confirmation of ongoing signs of clinical scaphoid injury, an urgent outpatient ‘fast’-wrist protocol MRI scan is ordered, with instructions to maintain wrist immobilization. Patients with positive scan results are referred for specialist orthopaedic assessment via a virtual fracture clinic.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims

Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model.

Methods

Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 652 - 658
1 Sep 2023
Albrektsson M Möller M Wolf O Wennergren D Sundfeldt M

Aims

To describe the epidemiology of acetabular fractures including patient characteristics, injury mechanisms, fracture patterns, treatment, and mortality.

Methods

We retrieved information from the Swedish Fracture Register (SFR) on all patients with acetabular fractures, of the native hip joint in the adult skeleton, sustained between 2014 and 2020. Study variables included patient age, sex, injury date, injury mechanism, fracture classification, treatment, and mortality.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 920 - 928
21 Oct 2024
Bell KR Oliver WM White TO Molyneux SG Graham C Clement ND Duckworth AD

Aims

The primary aim of this study is to quantify and compare outcomes following a dorsally displaced fracture of the distal radius in elderly patients (aged ≥ 65 years) who are managed conservatively versus with surgical fixation (open reduction and internal fixation). Secondary aims are to assess and compare upper limb-specific function, health-related quality of life, wrist pain, complications, grip strength, range of motion, radiological parameters, healthcare resource use, and cost-effectiveness between the groups.

Methods

A prospectively registered (ISRCTN95922938) randomized parallel group trial will be conducted. Elderly patients meeting the inclusion criteria with a dorsally displaced distal radius facture will be randomized (1:1 ratio) to either conservative management (cast without further manipulation) or surgery. Patients will be assessed at six, 12, 26 weeks, and 52 weeks post intervention. The primary outcome measure and endpoint will be the Patient-Rated Wrist Evaluation (PRWE) at 52 weeks. In addition, the abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH), EuroQol five-dimension questionnaire, pain score (visual analogue scale 1 to 10), complications, grip strength (dynamometer), range of motion (goniometer), and radiological assessments will be undertaken. A cost-utility analysis will be performed to assess the cost-effectiveness of surgery. We aim to recruit 89 subjects per arm (total sample size 178).


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 385 - 392
24 May 2023
Turgeon TR Hedden DR Bohm ER Burnell CD

Aims

Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design.

Methods

Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m2 (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples t-tests were used to compare to published thresholds.