Advertisement for orthosearch.org.uk
Results 1 - 39 of 39
Results per page:
Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Bone & Joint Research
Vol. 5, Issue 9 | Pages 370 - 378
1 Sep 2016
Munir S Oliver RA Zicat B Walter WL Walter WK Walsh WR

Objectives. This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following taper corrosion. Methods. The 26 cases examined were CoC/ABG Modular (n = 13) and ASR/SROM (n = 13). Blood serum metal ion levels were collected before and after revision surgery. The haematoxylin and eosin tissue sections were graded on the presence of fibrin exudates, necrosis, inflammatory cells and corrosion products. The corrosion products were identified based on visible observation and graded on abundance. Two independent observers blinded to the clinical patient findings scored all cases. Elemental analysis was performed on corrosion products within tissue sections. X-Ray diffraction was used to identify crystalline structures present in taper debris. Results. The CoC/ABG Modular patients had a mean age of 64.6 years (49.4 to 76.5) and ASR/SROM patients had a mean age of 58.2 years (33.3 to 85.6). The mean time in situ for CoC/ABG was 4.9 years (2 to 6.4) and ASR/SROM was 6.1 years (2.5 to 8.1). The blood serum metal ion concentrations reduced following revision surgery with the exception of Cr levels within CoC/ABG. The grading of tissue sections showed that the macrophage response and metal debris were significantly higher for the ASR/SROM patients (p < 0.001). The brown/red particles were significantly higher for ASR/SROM (p < 0.001). The taper debris contained traces of titanium oxide, chromium oxide and aluminium nitride. Conclusion. This study characterised and qualitatively graded the severity of the corrosion particles released into the hip joint from tapers that had corrosion damage. Cite this article: S. Munir, R. A. Oliver, B. Zicat, W. L. Walter, W. K. Walter, W. R. Walsh. The histological and elemental characterisation of corrosion particles from taper junctions. Bone Joint Res 2016;5:370–378. DOI: 10.1302/2046-3758.59.2000507


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims. Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. Methods. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems. Results. There was substantial agreement in grading among all three observers with uncleaned (n = 465) and with the subset of cleaned (n = 85) implants. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. Cleaning changed the average scores marginally using the Goldberg criteria (p = 0.290); however, using the VGS, approximately 40% of the scores for all observers changed, increasing the average score from 4.24 to 4.35 (p = 0.002). There was a strong correlation between measured material loss and new grading scores. Conclusion. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. This system provides potential advantages for assessing taper damage without requiring specialized imaging devices. Cite this article: Bone Joint Res 2023;12(3):155–164


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg taper corrosion score was 2 (1 to 4) and the annual rate of material loss at the taper was 0.084 mm. 3. /year (0 to 0.239). The median trunnion corrosion score was 1 (1 to 3). Conclusions. We have reported a level of trunnionosis for MOP hips with large-diameter heads that were revised for reasons other than trunnionosis, and therefore may be clinically insignificant. Cite this article: H. S. Hothi, D. Kendoff, C. Lausmann, J. Henckel, T. Gehrke, J. Skinner, A. Hart. Clinically insignificant trunnionosis in large-diameter metal-on-polyethylene total hip arthroplasty. Bone Joint Res 2017;6:52–56. DOI: 10.1302/2046-3758.61.BJR-2016-0150.R2


Bone & Joint Research
Vol. 7, Issue 7 | Pages 476 - 484
1 Jul 2018
Panagiotopoulou VC Davda K Hothi HS Henckel J Cerquiglini A Goodier WD Skinner J Hart A Calder PR

Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods. A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results. Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion. This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A retrieval analysis of the Precice intramedullary limb lengthening system. Bone Joint Res 2018;7:476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims. The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. Methods. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions. Results. All nails were removed at the end of treatment, having achieved their intended lengthening (20 mm to 65 mm) and after regenerate consolidation. All nails had evidence of corrosion localized to the screw holes and the extendable junctions; corrosion was graded as moderate at the junction of one nail and severe at the junctions of five nails. EDS analysis showed surface deposits to be chromium rich. Plain radiographs showed cortical thickening and osteolysis around the junction of six nails, corresponding to the same nails with moderate – severe junction corrosion. Conclusion. We found, in fully united bones, evidence of cortical thickening and osteolysis that appeared to be associated with corrosion at the extendable junction; when corrosion was present, cortical thickening was adjacent to this junction. Further work, with greater numbers of retrievals, is required to fully understand this association between corrosion and bony changes, and the influencing surgeon, implant, and patient factors involved. Cite this article: Bone Jt Open 2021;2(8):599–610


Bone & Joint Open
Vol. 5, Issue 6 | Pages 514 - 523
24 Jun 2024
Fishley W Nandra R Carluke I Partington PF Reed MR Kramer DJ Wilson MJ Hubble MJW Howell JR Whitehouse SL Petheram TG Kassam AM

Aims. In metal-on-metal (MoM) hip arthroplasties and resurfacings, mechanically induced corrosion can lead to elevated serum metal ions, a local inflammatory response, and formation of pseudotumours, ultimately requiring revision. The size and diametral clearance of anatomical (ADM) and modular (MDM) dual-mobility polyethylene bearings match those of Birmingham hip MoM components. If the acetabular component is satisfactorily positioned, well integrated into the bone, and has no surface damage, this presents the opportunity for revision with exchange of the metal head for ADM/MDM polyethylene bearings without removal of the acetabular component. Methods. Between 2012 and 2020, across two centres, 94 patients underwent revision of Birmingham MoM hip arthroplasties or resurfacings. Mean age was 65.5 years (33 to 87). In 53 patients (56.4%), the acetabular component was retained and dual-mobility bearings were used (DM); in 41 (43.6%) the acetabulum was revised (AR). Patients underwent follow-up of minimum two-years (mean 4.6 (2.1 to 8.5) years). Results. In the DM group, two (3.8%) patients underwent further surgery: one (1.9%) for dislocation and one (1.9%) for infection. In the AR group, four (9.8%) underwent further procedures: two (4.9%) for loosening of the acetabular component and two (4.9%) following dislocations. There were no other dislocations in either group. In the DM group, operating time (68.4 vs 101.5 mins, p < 0.001), postoperative drop in haemoglobin (16.6 vs 27.8 g/L, p < 0.001), and length of stay (1.8 vs 2.4 days, p < 0.001) were significantly lower. There was a significant reduction in serum metal ions postoperatively in both groups (p < 0.001), although there was no difference between groups for this reduction (p = 0.674 (cobalt); p = 0.186 (chromium)). Conclusion. In selected patients with Birmingham MoM hips, where the acetabular component is well-fixed and in a satisfactory position with no surface damage, the metal head can be exchanged for polyethylene ADM/MDM bearings with retention of the acetabular prosthesis. This presents significant benefits, with a shorter procedure and a lower risk of complications. Cite this article: Bone Jt Open 2024;5(6):514–523


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives. Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. Methods. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues. Results. The pull-off force of the head increased as the stiffness of the impactor tip increased but without increasing the force transmitted through the springs (patient). Increasing the impaction energy increased the pull-off force but also increased the force transmitted through the springs. Conclusions. To limit wear and corrosion, manufacturers should maximize the stiffness of the impactor tool but without damaging the surface of the head. This strategy will maximize the stability of the head on the stem for a given applied energy, without influencing the force transmitted through the patient’s tissues. Current impactor designs already appear to approach this limit. Increasing the applied energy (which is dependent on the mass of the hammer and square of the contact speed) increases the stability of the modular connection but proportionally increases the force transmitted through the patient’s tissues, as well as to the surface of the head, and should be restricted to safe levels. Cite this article: A. Krull, M. M. Morlock, N. E. Bishop. Maximizing the fixation strength of modular components by impaction without tissue damage. Bone Joint Res 2018;7:196–204. DOI: 10.1302/2046-3758.72.BJR-2017-0078.R2


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


Bone & Joint Research
Vol. 7, Issue 1 | Pages 85 - 93
1 Jan 2018
Saleh A George J Faour M Klika AK Higuera CA

Objectives. The diagnosis of periprosthetic joint infection (PJI) is difficult and requires a battery of tests and clinical findings. The purpose of this review is to summarize all current evidence for common and new serum biomarkers utilized in the diagnosis of PJI. Methods. We searched two literature databases, using terms that encompass all hip and knee arthroplasty procedures, as well as PJI and statistical terms reflecting diagnostic parameters. The findings are summarized as a narrative review. Results. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were the two most commonly published serum biomarkers. Most evidence did not identify other serum biomarkers that are clearly superior to ESR and CRP. Other serum biomarkers have not demonstrated superior sensitivity and have failed to replace CRP and ESR as first-line screening tests. D-dimer appears to be a promising biomarker, but more research is necessary. Factors that influence serum biomarkers include temporal trends, stage of revision, and implant-related factors (metallosis). Conclusion. Our review helped to identify factors that can influence serum biomarkers’ level changes; the recognition of such factors can help improve their diagnostic utility. As such, we cannot rely on ESR and CRP alone for the diagnosis of PJI prior to second-stage reimplantation, or in metal-on-metal or corrosion cases. The future of serum biomarkers will likely shift towards using genomics and proteomics to identify proteins transcribed via messenger RNA in response to infection and sepsis. Cite this article: A. Saleh, J. George, M. Faour, A. K. Klika, C. A. Higuera. Serum biomarkers in periprosthetic joint infections. Bone Joint Res 2018;7:85–93. DOI: 10.1302/2046-3758.71.BJR-2017-0323


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims. Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design. Patients and Methods. This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m. 2. and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (. sd. 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis. Results. Mean Harris Hip Scores improved from 54.1 (. sd. 20.5) to 91.2 (. sd. 10.8) at two years postoperatively (p < 0.001). All patients had radiologically well-fixed components, no patients experienced any instability, and no patients required any further intervention. Mean cobalt levels increased from 0.065 ug/l (. sd. 0.03) preoperatively to 0.30 ug/l (. sd. 0.51) at one year postoperatively (p = 0.01) but decreased at two years postoperatively to 0.16 ug/l (. sd. 0.23; p = 0.2). Four patients (9.3%) had a cobalt level outside the reference range (0.03 ug/l to 0.29 ug/l) at two years postoperatively, with values from 0.32 ug/l to 0.94 ug/l. The mean femoral BMD ratio was maintained in Gruen zones 2 to 7 at both one and two years postoperatively using this stem design. At two years postoperatively, mean BMD in the medial calcar was 101.5% of the baseline value. Conclusion. Use of a modular DM prosthesis and cementless, tapered femoral stem has shown encouraging results in young, active patients undergoing primary THA. Elevation in mean cobalt levels and the presence of four patients outside the reference range at two years postoperatively demonstrates the necessity of continued surveillance in this cohort. Cite this article: Bone Joint J 2019;101-B:365–371


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims

Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA.

Methods

We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 551 - 558
1 Aug 2023
Thomas J Shichman I Ohanisian L Stoops TK Lawrence KW Ashkenazi I Watson DT Schwarzkopf R

Aims

United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and osseointegration following treatment of THA UCS B2 and B3 periprosthetic fractures.

Methods

A retrospective review was conducted of all patients who underwent revision THA (rTHA) for periprosthetic UCS B2 and B3 periprosthetic fracture who received a single design monoblock fluted tapered titanium stem at two large, tertiary care, academic hospitals. A total of 72 patients met inclusion and exclusion criteria (68 UCS B2, and four UCS B3 fractures). Primary outcomes of interest were radiological stem subsidence (> 5 mm), radiological osseointegration, and fracture union. Sub-analysis was also done for 46 patients with minimum one-year follow-up.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 858 - 864
18 Oct 2021
Guntin J Plummer D Della Valle C DeBenedetti A Nam D

Aims

Prior studies have identified that malseating of a modular dual mobility liner can occur, with previous reported incidences between 5.8% and 16.4%. The aim of this study was to determine the incidence of malseating in dual mobility implants at our institution, assess for risk factors for liner malseating, and investigate whether liner malseating has any impact on clinical outcomes after surgery.

Methods

We retrospectively reviewed the radiographs of 239 primary and revision total hip arthroplasties with a modular dual mobility liner. Two independent reviewers assessed radiographs for each patient twice for evidence of malseating, with a third observer acting as a tiebreaker. Univariate analysis was conducted to determine risk factors for malseating with Youden’s index used to identify cut-off points. Cohen’s kappa test was used to measure interobserver and intraobserver reliability.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 559 - 570
14 Sep 2023
Wang Y Li G Ji B Xu B Zhang X Maimaitiyiming A Cao L

Aims

To investigate the optimal thresholds and diagnostic efficacy of commonly used serological and synovial fluid detection indexes for diagnosing periprosthetic joint infection (PJI) in patients who have rheumatoid arthritis (RA).

Methods

The data from 348 patients who had RA or osteoarthritis (OA) and had previously undergone a total knee (TKA) and/or a total hip arthroplasty (THA) (including RA-PJI: 60 cases, RA-non-PJI: 80 cases; OA-PJI: 104 cases, OA-non-PJI: 104 cases) were retrospectively analyzed. A receiver operating characteristic curve was used to determine the optimal thresholds of the CRP, ESR, synovial fluid white blood cell count (WBC), and polymorphonuclear neutrophil percentage (PMN%) for diagnosing RA-PJI and OA-PJI. The diagnostic efficacy was evaluated by comparing the area under the curve (AUC) of each index and applying the results of the combined index diagnostic test.


Abstract

MAGnetic Expansion Control (MAGEC) rods are used in the surgical treatment of children with early onset scoliosis. The magnetically controlled lengthening mechanism enables rod distractions without the need for repeated invasive surgery. The CE certification of these devices was suspended in March 2021 due, primarily, to performance evidence gaps in the documents provided by the manufacturer to regulators and notified bodies. MAGEC rods are therefore not permitted for use in countries requiring CE marking. This was a survey of 18 MAGEC rod surgeons in the UK about their perception of the impact of the CE suspension on the clinical management of their patients. Unsurprisingly, virtually all perceived a negative impact, reflecting the complexity of this patient group. Reassuringly, these surgeons are highly experienced in alternative treatment methods.

Cite this article: Bone Jt Open 2022;3(2):155–157.


Bone & Joint Open
Vol. 3, Issue 1 | Pages 93 - 97
10 Jan 2022
Kunze KN Orr M Krebs V Bhandari M Piuzzi NS

Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 785 - 795
1 Oct 2021
Matar HE Porter PJ Porter ML

Aims

Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA).

Methods

Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence.


Bone & Joint Open
Vol. 1, Issue 12 | Pages 743 - 748
1 Dec 2020
Mahon J McCarthy CJ Sheridan GA Cashman JP O'Byrne JM Kenny P

Aims

The Exeter V40 cemented femoral stem was first introduced in 2000. The largest single-centre analysis of this implant to date was published in 2018 by Westerman et al. Excellent results were reported at a minimum of ten years for the first 540 cases performed at the designer centre in the Exeter NHS Trust, with stem survivorship of 96.8%. The aim of this current study is to report long-term outcomes and survivorship for the Exeter V40 stem in a non-designer centre.

Methods

All patients undergoing primary total hip arthroplasty using the Exeter V40 femoral stem between 1 January 2005 and 31 January 2010 were eligible for inclusion. Data were collected prospectively, with routine follow-up at six to 12 months, two years, five years, and ten years. Functional outcomes were assessed using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. Outcome measures included data on all components in situ beyond ten years, death occurring within ten years with components in situ, and all-cause revision surgery.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 259 - 268
1 Apr 2021
Lou A Wang L Lai W Zhu D Wu W Wang Z Cai Z Yang M

Aims

Rheumatoid arthritis (RA), which mainly results from fibroblast-like synoviocyte (FLS) dysfunction, is related to oxidative stress. Advanced oxidation protein products (AOPPs), which are proinflammatory mediators and a novel biomarker of oxidative stress, have been observed to accumulate significantly in the serum of RA patients. Here, we present the first investigation of the effects of AOPPs on RA-FLSs and the signalling pathway involved in AOPP-induced inflammatory responses and invasive behaviour.

Methods

We used different concentrations of AOPPs (50 to 200 µg/ml) to treat RA-FLSs. Cell migration and invasion and the expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP-3), and MMP-13 were investigated. Western blot and immunofluorescence were used to analyze nuclear factor-κB (NF-κB) activation.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims

To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life.

Methods

Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength.


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1128 - 1135
14 Sep 2020
Khoshbin A Haddad FS Ward S O hEireamhoin S Wu J Nherera L Atrey A

Aims

The rate of dislocation when traditional single bearing implants are used in revision total hip arthroplasty (THA) has been reported to be between 8% and 10%. The use of dual mobility bearings can reduce this risk to between 0.5% and 2%. Dual mobility bearings are more expensive, and it is not clear if the additional clinical benefits constitute value for money for the payers. We aimed to estimate the cost-effectiveness of dual mobility compared with single bearings for patients undergoing revision THA.

Methods

We developed a Markov model to estimate the expected cost and benefits of dual mobility compared with single bearing implants in patients undergoing revision THA. The rates of revision and further revision were calculated from the National Joint Registry of England and Wales, while rates of transition from one health state to another were estimated from the literature, and the data were stratified by sex and age. Implant and healthcare costs were estimated from local procurement prices and national tariffs. Quality-adjusted life-years (QALYs) were calculated using published utility estimates for patients undergoing THA.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 146 - 155
1 Mar 2019
Langton DJ Natu S Harrington CF Bowsher JG Nargol AVF

Objectives

We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr.

Methods

For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric wear analysis, joint fluid (JF) Co and Cr concentrations, and ALVAL grade (n = 315). Receiver operating characteristic curves were constructed to assess the reliability of the CoCr JFR in identifying severe ALVAL and/or SOTP. For part B, we included only patients with unilateral prostheses who had given matched serum and whole blood samples for Co and Cr analysis (n = 155). Multiple regression was used to examine the influence of JF concentrations on the serum partitioning of Co and Cr in the blood.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 595 - 600
1 Nov 2018
Bergiers S Hothi HS Henckel J Eskelinen A Skinner J Hart A

Objectives

Previous studies have suggested that metal-on-metal (MoM) Pinnacle (DePuy Synthes, Warsaw, Indiana) hip arthroplasties implanted after 2006 exhibit higher failure rates. This was attributed to the production of implants with reduced diametrical clearances between their bearing surfaces, which, it was speculated, were outside manufacturing tolerances. This study aimed to better understand the performance of Pinnacle Systems manufactured before and after this event.

Methods

A total of 92 retrieved MoM Pinnacle hips were analyzed, of which 45 were implanted before 2007, and 47 from 2007 onwards. The ‘pre-2007’ group contained 45 implants retrieved from 21 male and 24 female patients, with a median age of 61.3 years (interquartile range (IQR) 57.1 to 65.5); the ‘2007 onwards’ group contained 47 implants retrieved from 19 male and 28 female patients, with a median age of 61.8 years (IQR 58.5 to 67.8). The volume of material lost from their bearing and taper surfaces was measured using coordinate and roundness measuring machines. These outcomes were then compared statistically using linear regression models, adjusting for potentially confounding factors.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 508 - 510
1 Aug 2018
Horriat S Haddad FS


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


Bone & Joint Research
Vol. 5, Issue 8 | Pages 338 - 346
1 Aug 2016
MacLeod AR Sullivan NPT Whitehouse MR Gill HS

Objectives

Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection.

Materials and Methods

Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences.


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 310 - 316
1 Mar 2017
Hothi H Henckel J Shearing P Holme T Cerquiglini A Laura AD Atrey A Skinner J Hart A

Aims

The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem.

Materials and Methods

We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives

In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined.

Methods

A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN).


Bone & Joint Research
Vol. 6, Issue 7 | Pages 405 - 413
1 Jul 2017
Matharu GS Judge A Murray DW Pandit HG

Objectives

Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision.

Methods

We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 162 - 168
1 May 2016
Athanasou NA

Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.

Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives

Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants.

Methods

Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 206 - 214
1 Jun 2016
Malak TT Broomfield JAJ Palmer AJR Hopewell S Carr A Brown C Prieto-Alhambra D Glyn-Jones S

Objectives

High failure rates of metal-on-metal hip arthroplasty implants have highlighted the need for more careful introduction and monitoring of new implants and for the evaluation of the safety of medical devices. The National Joint Registry and other regulatory services are unable to detect failing implants at an early enough stage. We aimed to identify validated surrogate markers of long-term outcome in patients undergoing primary total hip arthroplasty (THA).

Methods

We conducted a systematic review of studies evaluating surrogate markers for predicting long-term outcome in primary THA. Long-term outcome was defined as revision rate of an implant at ten years according to National Institute of Health and Care Excellence guidelines. We conducted a search of Medline and Embase (OVID) databases. Separate search strategies were devised for the Cochrane database and Google Scholar. Each search was performed to include articles from the date of their inception to June 8, 2015.


Bone & Joint Research
Vol. 1, Issue 4 | Pages 56 - 63
1 Apr 2012
Langton DJ Sidaginamale R Lord JK Nargol AVF Joyce TJ

Objectives

An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer.

Methods

Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated.


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


Bone & Joint Research
Vol. 2, Issue 5 | Pages 84 - 95
1 May 2013
Sidaginamale RP Joyce TJ Lord JK Jefferson R Blain PG Nargol AVF Langton DJ

Objectives

The aims of this piece of work were to: 1) record the background concentrations of blood chromium (Cr) and cobalt (Co) concentrations in a large group of subjects; 2) to compare blood/serum Cr and Co concentrations with retrieved metal-on-metal (MoM) hip resurfacings; 3) to examine the distribution of Co and Cr in the serum and whole blood of patients with MoM hip arthroplasties; and 4) to further understand the partitioning of metal ions between the serum and whole blood fractions.

Methods

A total of 3042 blood samples donated to the local transfusion centre were analysed to record Co and Cr concentrations. Also, 91 hip resurfacing devices from patients who had given pre-revision blood/serum samples for metal ion analysis underwent volumetric wear assessment using a coordinate measuring machine. Linear regression analysis was carried out and receiver operating characteristic curves were constructed to assess the reliability of metal ions to identify abnormally wearing implants. The relationship between serum and whole blood concentrations of Cr and Co in 1048 patients was analysed using Bland-Altman charts. This relationship was further investigated in an in vitro study during which human blood was spiked with trivalent and hexavalent Cr, the serum then separated and the fractions analysed.