Despite the vast quantities of published
Aims. The aim of this study was to create
The use of
Aims. The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of
Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using
Cite this article:
Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.Aims
Methods
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing
Aims. Machine learning (ML), a branch of
Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An
Aims. While internet search engines have been the primary information source for patients’ questions,
Aims. Hip disease is common in children with cerebral palsy (CP) and can decrease quality of life and function. Surveillance programmes exist to improve outcomes by treating hip disease at an early stage using radiological surveillance. However, studies and surveillance programmes report different radiological outcomes, making it difficult to compare. We aimed to identify the most important radiological measurements and develop a core measurement set (CMS) for clinical practice, research, and surveillance programmes. Methods. A systematic review identified a list of measurements previously used in studies reporting radiological hip outcomes in children with CP. These measurements informed a two-round Delphi study, conducted among orthopaedic surgeons and specialist physiotherapists. Participants rated each measurement on a nine-point Likert scale (‘not important’ to ‘critically important’). A consensus meeting was held to finalize the CMS. Results. Overall, 14 distinct measurements were identified in the systematic review, with Reimer’s migration percentage being the most frequently reported. These measurements were presented over the two rounds of the Delphi process, along with two additional measurements that were suggested by participants. Ultimately, two measurements, Reimer’s migration percentage and femoral head-shaft angle, were included in the CMS. Conclusion. This use of a minimum standardized set of measurements has the potential to encourage uniformity across hip surveillance programmes, and may streamline the development of tools, such as
Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage
Machine learning (ML) holds significant promise in optimizing various aspects of total shoulder arthroplasty (TSA), potentially improving patient outcomes and enhancing surgical decision-making. The aim of this systematic review was to identify ML algorithms and evaluate their effectiveness, including those for predicting clinical outcomes and those used in image analysis. We searched the PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases for studies applying ML algorithms in TSA. The analysis focused on dataset characteristics, relevant subspecialties, specific ML algorithms used, and their performance outcomes.Aims
Methods
Cite this article:
Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.Aims
Methods
Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against
Aims
Methods