Aims. Traditionally, acetabular component insertion during total hip arthroplasty (THA) is visually assisted in the posterior approach and fluoroscopically assisted in the anterior approach. The present study examined the accuracy of a new surgeon during anterior (NSA) and posterior (NSP) THA using robotic arm-assisted
Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction. This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.Aims
Methods
Aims. Complex joint fractures of the lower extremity are often accompanied by soft-tissue swelling and are associated with prolonged hospitalization and soft-tissue complications. The aim of the study was to evaluate the effect of vascular impulse
Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation
Virtual fracture clinics (VFCs) are being increasingly used to offer safe and efficient orthopaedic review without the requirement for face-to-face contact. With the onset of the COVID-19 pandemic, we sought to develop an online referral pathway that would allow us to provide definitive orthopaedic management plans and reduce face-to-face contact at the fracture clinics. All patients presenting to the emergency department from 21March 2020 with a musculoskeletal injury or potential musculoskeletal infection deemed to require orthopaedic input were discussed using a secure messaging app. A definitive management plan was communicated by an on-call senior orthopaedic decision-maker. We analyzed the time to decision, if further information was needed, and the referral outcome. An analysis of the orthopaedic referrals for the same period in 2019 was also performed as a comparison.Introduction
Methods
Aims. Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative
Aims. Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. Methods. Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome
Aims. While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes. Methods. This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture
Aims. In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic
Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future
Aims. The use of
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing
Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating
Aims. COVID-19 has compounded a growing waiting list problem, with over 4.5 million patients now waiting for planned elective care in the UK. Views of patients on waiting lists are rarely considered in prioritization. Our primary aim was to understand how to support patients on waiting lists by hearing their experiences, concerns, and expectations. The secondary aim was to capture objective change in disability and coping mechanisms. Methods. A minimum representative sample of 824 patients was required for quantitative analysis to provide a 3% margin of error. Sampling was stratified by body region (upper/lower limb, spine) and duration on the waiting list. Questionnaires were sent to a random sample of elective orthopaedic waiting list patients with their planned intervention paused due to COVID-19. Analyzed parameters included baseline health, change in physical/mental health status, challenges and coping strategies, preferences/concerns regarding treatment, and objective quality of life (EuroQol five-dimension questionnaire (EQ-5D), Generalized Anxiety Disorder 2-item scale (GAD-2)). Qualitative analysis was performed via the Normalization Process Theory. Results. A total of 888 patients responded. Better health, pain, and mood scores were reported by upper limb patients. The longest waiters reported better health but poorer mood and anxiety scores. Overall, 82% had tried self-help measures to ease symptoms; 94% wished to proceed with their intervention; and 21% were prepared to tolerate deferral. Qualitative analysis highlighted the overall patient mood to be represented by the terms ‘understandable’, ‘frustrated’, ‘pain’, ‘disappointed’, and ‘not happy/depressed’. COVID-19-mandated health and safety measures and
Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting
Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel
Aims. The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking
Virtual encounters have experienced an exponential rise amid the current COVID-19 crisis. This abrupt change, seen in response to unprecedented medical and environmental challenges, has been forced upon the orthopaedic community. However, such changes to adopting virtual care and
Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating
The COVID-19 pandemic has disrupted all segments of daily life, with the healthcare sector being at the forefront of this upheaval. Unprecedented efforts have been taken worldwide to curb this ongoing global catastrophe that has already resulted in many fatalities. One of the areas that has received little attention amid this turmoil is the disruption to trainee education, particularly in specialties that involve acquisition of procedural skills. Hand surgery in Singapore is a standalone combined programme that relies heavily on dedicated cross-hospital rotations, an extensive didactic curriculum and supervised hands-on training of increasing complexity. All aspects of this training programme have been affected because of the cancellation of elective surgical procedures, suspension of cross-hospital rotations, redeployment of residents, and an unsustainable duty roster. There is a real concern that trainees will not be able to meet their training requirements and suffer serious issues like burnout and depression. The long-term impact of suspending training indefinitely is a severe disruption of essential medical services. This article examines the impact of a global pandemic on trainee education in a demanding surgical speciality. We have outlined strategies to maintain trainee competencies based on the following considerations: 1) the safety and wellbeing of trainees is paramount; 2) resource utilization must be thoroughly rationalized; 3)
Aims. Spinal fusion remains the gold standard in the treatment of idiopathic scoliosis. However, anterior vertebral body tethering (AVBT) is gaining widespread interest, despite the limited data on its efficacy. The aim of our study was to determine the clinical efficacy of AVBT in skeletally immature patients with idiopathic scoliosis. Methods. All consecutive skeletally immature patients with idiopathic scoliosis treated with AVBT enrolled in a longitudinal, multicentre, prospective database between 2013 and 2016 were analyzed. All patients were treated by one of two surgeons working at two independent centres. Data were collected prospectively in a multicentre database and supplemented retrospectively where necessary. Patients with a minimum follow-up of two years were included in the analysis. Clinical success was set a priori as a major coronal Cobb angle of < 35° at the most recent follow-up. Results. A total of 57 patients were included in the study. Their mean age was 12.7 years (SD 1.5; 8.2 to 16.7), with 95% being female. The mean preoperative Sanders score and Risser grade was 3.3 (SD 1.2), and 0.05 (0 to 3), respectively. The majority were thoracic tethers (96.5%) and the mean follow-up was 40.4 months (SD 9.3). The mean preoperative major curve of 51° (SD 10.9°; 31° to 81°) was significantly improved to a mean of 24.6° (SD 11.8°; 0° to 57°) at the first postoperative visit (45.6% (SD 17.6%; 7% to 107%); p < 0.001)) with further significant correction to a mean of 16.3° (SD 12.8°; -12 to 55; p < 0.001) at one year and a significant correction to a mean of 23° (SD 15.4°; -18° to 57°) at the final follow-up (42.9% (-16% to 147%); p < 0.001). Clinical success was achieved in 44 patients (77%). Most patients reached skeletal maturity, with a mean Risser score of 4.3 (SD 1.02), at final follow-up. The complication rate was 28.1% with a 15.8% rate of unplanned revision procedures. Conclusion. AVBT is associated with satisfactory correction of deformity and an acceptable complication rate when used in skeletally immature patients with idiopathic scoliosis. Improved patient selection and better implant
Aims. Robotic-assisted total knee arthroplasty (RA-TKA) has been introduced to provide accurate bone cuts and help achieve the target knee alignment, along with symmetric gap balancing. The purpose of this study was to determine if any early clinical benefits could be realized following TKA using robotic-assisted
This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool. Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures.Aims
Methods
Aims. To assess the effect of physical exercise (PE) on the histological and transcriptional characteristics of proteoglycan-induced arthritis (PGIA) in BALB/c mice. Methods. Following PGIA, mice were subjected to treadmill PE for ten weeks. The tarsal joints were used for histological and genetic analysis through microarray
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article:
cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).Aims
Methods
Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan. Cite this article: Abstract
Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m2 (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples Aims
Methods
Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.
99mTc-UBI29-41-Cy5 specificity for Aims
Methods
The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.Aims
Methods
Robotic-assisted unicompartmental knee arthroplasty (R-UKA) has been proposed as an approach to improve the results of the conventional manual UKA (C-UKA). The aim of this meta-analysis was to analyze the studies comparing R-UKA and C-UKA in terms of clinical outcomes, radiological results, operating time, complications, and revisions. The literature search was conducted on three databases (PubMed, Cochrane, and Web of Science) on 20 February 2024 according to the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Inclusion criteria were comparative studies, written in the English language, with no time limitations, on the comparison of R-UKA and C-UKA. The quality of each article was assessed using the Downs and Black Checklist for Measuring Quality.Aims
Methods
Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
Ankle fracture is one of the most common musculoskeletal injuries sustained in the UK. Many patients experience pain and physical impairment, with the consequences of the fracture and its management lasting for several months or even years. The broad aim of ankle fracture treatment is to maintain the alignment of the joint while the fracture heals, and to reduce the risks of problems, such as stiffness. More severe injuries to the ankle are routinely treated surgically. However, even with advances in surgery, there remains a risk of complications; for patients experiencing these, the associated loss of function and quality of life (Qol) is considerable. Non-surgical treatment is an alternative to surgery and involves applying a cast carefully shaped to the patient’s ankle to correct and maintain alignment of the joint with the key benefit being a reduction in the frequency of common complications of surgery. The main potential risk of non-surgical treatment is a loss of alignment with a consequent reduction in ankle function. This study aims to determine whether ankle function, four months after treatment, in patients with unstable ankle fractures treated with close contact casting is not worse than in those treated with surgical intervention, which is the current standard of care. This trial is a pragmatic, multicentre, randomized non-inferiority clinical trial with an embedded pilot, and with 12 months clinical follow-up and parallel economic analysis. A surveillance study using routinely collected data will be performed annually to five years post-treatment. Adult patients, aged 60 years and younger, with unstable ankle fractures will be identified in daily trauma meetings and fracture clinics and approached for recruitment prior to their treatment. Treatments will be performed in trauma units across the UK by a wide range of surgeons. Details of the surgical treatment, including how the operation is done, implant choice, and the recovery programme afterwards, will be at the discretion of the treating surgeon. The non-surgical treatment will be close-contact casting performed under anaesthetic, a technique which has gained in popularity since the publication of the Ankle Injury Management (AIM) trial. In all, 890 participants (445 per group) will be randomly allocated to surgical or non-surgical treatment. Data regarding ankle function, QoL, complications, and healthcare-related costs will be collected at eight weeks, four and 12 months, and then annually for five years following treatment. The primary outcome measure is patient-reported ankle function at four months from treatment.Aims
Methods
Cite this article:
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes. Cite this article:
The Single Assessment Numerical Evalution (SANE) score is a pragmatic alternative to longer patient-reported outcome measures (PROMs). The purpose of this study was to investigate the concurrent validity of the SANE and hip-specific PROMs in a generalized population of patients with hip pain at a single timepoint upon initial visit with an orthopaedic surgeon who is a hip preservation specialist. We hypothesized that SANE would have a strong correlation with the 12-question International Hip Outcome Tool (iHOT)-12, the Hip Outcome Score (HOS), and the Hip disability and Osteoarthritis Outcome Score (HOOS), providing evidence for concurrent validity of the SANE and hip-specific outcome measures in patients with hip pain. This study was a cross-sectional retrospective database analysis at a single timepoint. Data were collected from 2,782 patients at initial evaluation with a hip preservation specialist using the iHOT-12, HOS, HOOS, and SANE. Outcome scores were retrospectively analyzed using Pearson correlation coefficients.Aims
Methods
To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.Aims
Methods
Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery. A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group.Aims
Methods
Hip resurfacing remains a potentially valuable surgical procedure for appropriately-selected patients with optimised implant choices. However, concern regarding high early failure rates continues to undermine confidence in use. A large contributor to failure is adverse local tissue reactions around metal-on-metal (MoM) bearing surfaces. Such phenomena have been well-explored around MoM total hip arthroplasties, but comparable data in equivalent hip resurfacing procedures is lacking. In order to define genetic predisposition, we performed a case-control study investigating the role of human leucocyte antigen (HLA) genotype in the development of pseudotumours around MoM hip resurfacings. A matched case-control study was performed using the prospectively-collected database at the host institution. In all, 16 MoM hip resurfacing 'cases' were identified as having symptomatic periprosthetic pseudotumours on preoperative metal artefact reduction sequence (MARS) MRI, and were subsequently histologically confirmed as high-grade aseptic lymphocyte-dominated vasculitis-associated lesions (ALVALs) at revision surgery. ‘Controls’ were matched by implant type in the absence of evidence of pseudotumour. Blood samples from all cases and controls were collected prospectively for high resolution genetic a nalysis targeting 11 separate HLA loci. Statistical significance was set at 0.10 a priori to determine the association between HLA genotype and pseudotumour formation, given the small sample size.Aims
Methods
To review the evidence and reach consensus on recommendations for follow-up after total hip and knee arthroplasty. A programme of work was conducted, including: a systematic review of the clinical and cost-effectiveness literature; analysis of routine national datasets to identify pre-, peri-, and postoperative predictors of mid-to-late term revision; prospective data analyses from 560 patients to understand how patients present for revision surgery; qualitative interviews with NHS managers and orthopaedic surgeons; and health economic modelling. Finally, a consensus meeting considered all the work and agreed the final recommendations and research areas.Aims
Methods
The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.Aims
Methods
A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.Aims
Methods
This study aimed to assess the carbon footprint associated with total hip arthroplasty (THA) in a UK hospital setting, considering various components within the operating theatre. The primary objective was to identify actionable areas for reducing carbon emissions and promoting sustainable orthopaedic practices. Using a life-cycle assessment approach, we conducted a prospective study on ten cemented and ten hybrid THA cases, evaluating carbon emissions from anaesthetic room to recovery. Scope 1 and scope 2 emissions were considered, focusing on direct emissions and energy consumption. Data included detailed assessments of consumables, waste generation, and energy use during surgeries.Aims
Methods
A core outcome set for adult, open lower limb fracture has been established consisting of ‘Walking, gait and mobility’, ‘Being able to return to life roles’, ‘Pain or discomfort’, and ‘Quality of life’. This study aims to identify which outcome measurement instruments (OMIs) should be recommended to measure each core outcome. A systematic review and quality assessment were conducted to identify existing instruments with evidence of good measurement properties in the open lower limb fracture population for each core outcome. Additionally, shortlisting criteria were developed to identify suitable instruments not validated in the target population. Candidate instruments were presented, discussed, and voted on at a consensus meeting of key stakeholders.Aims
Methods
This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Aims
Methods
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.Aims
Methods
In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.Aims
Methods
Objectives. Patient-specific (PS) implantation surgical
Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).Aims
Methods
Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant ( In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.Aims
Methods
Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.Aims
Methods
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.Aims
Methods
To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.Aims
Methods
In 2017, the British Society for Children’s Orthopaedic Surgery engaged the profession and all relevant stakeholders in two formal research prioritization processes. In this editorial, we describe the impact of this prioritization on funding, and how research in children’s orthopaedics, which was until very recently a largely unfunded and under-investigated area, is now flourishing. Establishing research priorities was a crucial step in this process. Cite this article:
Chondrosarcoma is the second most common surgically treated primary bone sarcoma. Despite a large number of scientific papers in the literature, there is still significant controversy about diagnostics, treatment of the primary tumour, subtypes, and complications. Therefore, consensus on its day-to-day treatment decisions is needed. In January 2024, the Birmingham Orthopaedic Oncology Meeting (BOOM) attempted to gain global consensus from 300 delegates from over 50 countries. The meeting focused on these critical areas and aimed to generate consensus statements based on evidence amalgamation and expert opinion from diverse geographical regions. In parallel, periprosthetic joint infection (PJI) in oncological reconstructions poses unique challenges due to factors such as adjuvant treatments, large exposures, and the complexity of surgery. The meeting debated two-stage revisions, antibiotic prophylaxis, managing acute PJI in patients undergoing chemotherapy, and defining the best strategies for wound management and allograft reconstruction. The objectives of the meeting extended beyond resolving immediate controversies. It sought to foster global collaboration among specialists attending the meeting, and to encourage future research projects to address unsolved dilemmas. By highlighting areas of disagreement and promoting collaborative research endeavours, this initiative aims to enhance treatment standards and potentially improve outcomes for patients globally. This paper sets out some of the controversies and questions that were debated in the meeting. Cite this article:
This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.Aims
Methods
Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.Aims
Methods
The aim of this study was to investigate the safety and efficacy of 3D-printed modular prostheses in patients who underwent joint-sparing limb salvage surgery (JSLSS) for malignant femoral diaphyseal bone tumours. We retrospectively reviewed 17 patients (13 males and four females) with femoral diaphyseal tumours who underwent JSLSS in our hospital.Aims
Methods
Treatment of Weber B ankle fractures that are stable on weightbearing radiographs but unstable on concomitant stress tests (classified SER4a) is controversial. Recent studies indicate that these fractures should be treated nonoperatively, but no studies have compared alternative nonoperative options. This study aims to evaluate patient-reported outcomes and the safety of fracture treatment using functional orthosis versus cast immobilization. A total of 110 patients with Weber B/SER4a ankle fractures will be randomized (1:1 ratio) to receive six weeks of functional orthosis treatment or cast immobilization with a two-year follow-up. The primary outcome is patient-reported ankle function and symptoms measured by the Manchester-Oxford Foot and Ankle Questionnaire (MOxFQ); secondary outcomes include Olerud-Molander Ankle Score, radiological evaluation of ankle congruence in weightbearing and gravity stress tests, and rates of treatment-related adverse events. The Regional Committee for Medical and Health Research (approval number 277693) has granted ethical approval, and the study is funded by South-Eastern Norway Regional Health Authority (grant number 2023014).Aims
Methods
Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay.Aims
Methods
The burden of revision total hip arthroplasty (rTHA) continues to grow. The surgery is complex and associated with significant costs. Regional rTHA networks have been proposed to improve outcomes and to reduce re-revisions, and therefore costs. The aim of this study was to accurately quantify the cost and reimbursement for a rTHA service, and to assess the financial impact of case complexity at a tertiary referral centre within the NHS. A retrospective analysis of all revision hip procedures was performed at this centre over two consecutive financial years (2018 to 2020). Cases were classified according to the Revision Hip Complexity Classification (RHCC) and whether they were infected or non-infected. Patients with an American Society of Anesthesiologists (ASA) grade ≥ III or BMI ≥ 40 kg/m2 are considered “high risk” by the RHCC. Costs were calculated using the Patient Level Information and Costing System (PLICS), and remuneration based on Healthcare Resource Groups (HRG) data. The primary outcome was the financial difference between tariff and cost per patient episode.Aims
Methods
The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons. Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes.Aims
Methods
Reimers migration percentage (MP) is a key measure to inform decision-making around the management of hip displacement in cerebral palsy (CP). The aim of this study is to assess validity and inter- and intra-rater reliability of a novel method of measuring MP using a smart phone app (HipScreen (HS) app). A total of 20 pelvis radiographs (40 hips) were used to measure MP by using the HS app. Measurements were performed by five different members of the multidisciplinary team, with varying levels of expertise in MP measurement. The same measurements were repeated two weeks later. A senior orthopaedic surgeon measured the MP on picture archiving and communication system (PACS) as the gold standard and repeated the measurements using HS app. Pearson’s correlation coefficient (r) was used to compare PACS measurements and all HS app measurements and assess validity. Intraclass correlation coefficient (ICC) was used to assess intra- and inter-rater reliability.Aims
Methods
The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery. Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines.Aims
Methods
Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus. Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.Aims
Methods
Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA), and has been linked to poor cementation technique. We aimed to develop a consensus on the optimal technique for component cementation in TKA. A UK-based, three-round, online modified Delphi Expert Consensus Study was completed focusing on cementation technique in TKA. Experts were identified as having a minimum of five years’ consultant experience in the NHS and fulfilling any one of the following criteria: a ‘high volume’ knee arthroplasty practice (> 150 TKAs per annum) as identified from the National joint Registry of England, Wales, Northern Ireland and the Isle of Man; a senior author of at least five peer reviewed articles related to TKA in the previous five years; a surgeon who is named trainer for a post-certificate of comletion of training fellowship in TKA.Aims
Methods
The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.Aims
Methods
The aim of this study was to produce clinical consensus recommendations about the non-surgical treatment of children with Perthes’ disease. The recommendations are intended to support clinical practice in a condition for which there is no robust evidence to guide optimal care. A two-round, modified Delphi study was conducted online. An advisory group of children’s orthopaedic specialists consisting of physiotherapists, surgeons, and clinical nurse specialists designed a survey. In the first round, participants also had the opportunity to suggest new statements. The survey included statements related to ‘Exercises’, ‘Physical activity’, ‘Education/information sharing’, ‘Input from other services’, and ‘Monitoring assessments’. The survey was shared with clinicians who regularly treat children with Perthes’ disease in the UK using clinically relevant specialist groups and social media. A predetermined threshold of ≥ 75% for consensus was used for recommendation, with a threshold of between 70% and 75% being considered as ‘points to consider’.Aims
Methods
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs). In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years.Aims
Methods
Orthopaedic surgery uses many varied instruments with high-speed, high-impact, thermal energy and sometimes heavy instruments, all of which potentially result in aerosolization of contaminated blood, tissue, and bone, raising concerns for clinicians’ health. This study quantifies the aerosol exposure by measuring the number and size distribution of the particles reaching the lead surgeon during key orthopaedic operations. The aerosol yield from 17 orthopaedic open surgeries (on the knee, hip, and shoulder) was recorded at the position of the lead surgeon using an Aerodynamic Particle Sizer (APS; 0.5 to 20 μm diameter particles) sampling at 1 s time resolution. Through timestamping, detected aerosol was attributed to specific procedures.Aims
Methods
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
The aim of this investigation was to compare risk of infection in both cemented and uncemented hemiarthroplasty (HA) as well as in total hip arthroplasty (THA) following femoral neck fracture. Data collection was performed using the German Arthroplasty Registry (EPRD). In HA and THA following femoral neck fracture, fixation method was divided into cemented and uncemented prostheses and paired according to age, sex, BMI, and the Elixhauser Comorbidity Index using Mahalanobis distance matching.Aims
Methods
Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination.Aims
Methods
This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture. Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.Aims
Methods
Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs.Aims
Methods
Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry.Aims
Methods
The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods
Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.Aims
Methods
People with severe, persistent low back pain (LBP) may be offered lumbar spine fusion surgery if they have had insufficient benefit from recommended non-surgical treatments. However, National Institute for Health and Care Excellence (NICE) 2016 guidelines recommended not offering spinal fusion surgery for adults with LBP, except as part of a randomized clinical trial. This survey aims to describe UK clinicians’ views about the suitability of patients for such a future trial, along with their views regarding equipoise for randomizing patients in a future clinical trial comparing lumbar spine fusion surgery to best conservative care (BCC; the FORENSIC-UK trial). An online cross-sectional survey was piloted by the multidisciplinary research team, then shared with clinical professional groups in the UK who are involved in the management of adults with severe, persistent LBP. The survey had seven sections that covered the demographic details of the clinician, five hypothetical case vignettes of patients with varying presentations, a series of questions regarding the preferred management, and whether or not each clinician would be willing to recruit the example patients into future clinical trials.Aims
Methods
Young adults undergoing total hip arthroplasty (THA) largely have different indications for surgery, preoperative function, and postoperative goals compared to a standard patient group. The aim of our study was to describe young adult THA preoperative function and quality of life, and to assess postoperative satisfaction and compare this with functional outcome measures. A retrospective cohort analysis of young adults (aged < 50 years) undergoing THA between May 2018 and May 2023 in a single tertiary centre was undertaken. Median follow-up was 31 months (12 to 61). Oxford Hip Score (OHS) and focus group-designed questionnaires were distributed. Searches identified 244 cases in 225 patients. Those aged aged under 30 years represented 22.7% of the cohort. Developmental dysplasia of the hip (50; 45.5%) and Perthes’ disease (15; 13.6%) were the commonest indications for THA.Aims
Methods
Dupuytren’s contracture is characterized by increased fibrosis of the palmar aponeurosis, with eventual replacement of the surrounding fatty tissue with palmar fascial fibromatosis. We hypothesized that adipocytokines produced by adipose tissue in contact with the palmar aponeurosis might promote fibrosis of the palmar aponeurosis. We compared the expression of the adipocytokines adiponectin and leptin in the adipose tissue surrounding the palmar aponeurosis of male patients with Dupuytren’s contracture, and of male patients with carpal tunnel syndrome (CTS) as the control group. We also examined the effects of adiponectin on fibrosis-related genes and proteins expressed by fibroblasts in the palmar aponeurosis of patients with Dupuytren’s contracture.Aims
Methods
Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.Aims
Methods
Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p.Aims
Methods
The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
The aim of this trial was to assess the cost-effectiveness of a soft bandage and immediate discharge, compared with rigid immobilization, in children aged four to 15 years with a torus fracture of the distal radius. A within-trial economic evaluation was conducted from the UK NHS and personal social services (PSS) perspective, as well as a broader societal point of view. Health resources and quality of life (the youth version of the EuroQol five-dimension questionnaire (EQ-5D-Y)) data were collected, as part of the Forearm Recovery in Children Evaluation (FORCE) multicentre randomized controlled trial over a six-week period, using trial case report forms and patient-completed questionnaires. Costs and health gains (quality-adjusted life years (QALYs)) were estimated for the two trial treatment groups. Regression was used to estimate the probability of the new treatment being cost-effective at a range of ‘willingness-to-pay’ thresholds, which reflect a range of costs per QALY at which governments are typically prepared to reimburse for treatment.Aims
Methods
CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.Aims
Methods
This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA). Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.Aims
Methods
We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography.Aims
Methods
To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.Aims
Methods