header advert
Results 1 - 20 of 332
Results per page:
Bone & Joint Research
Vol. 7, Issue 8 | Pages 501 - 507
1 Aug 2018
Phan C Nguyen D Lee KM Koo S

Objectives. The objective of this study was to quantify the relative movement between the articular surfaces in the tibiotalar and subtalar joints during normal walking in asymptomatic individuals. Methods. 3D movement data of the ankle joint complex were acquired from 18 subjects using a biplanar fluoroscopic system and 3D-to-2D registration of bone models obtained from CT images. Surface relative velocity vectors (SRVVs) of the articular surfaces of the tibiotalar and subtalar joints were calculated. The relative movement of the articulating surfaces was quantified as the mean relative speed (RS) and synchronization index (SI. ENT. ) of the SRVVs. Results. SI. ENT. and mean RS data showed that the tibiotalar joint exhibited translational movement throughout the stance, with a mean SI. ENT. of 0.54 (. sd. 0.21). The mean RS of the tibiotalar joint during the 0% to 20% post heel-strike phase was 36.0 mm/s (. sd. 14.2), which was higher than for the rest of the stance period. The subtalar joint had a mean SI. ENT. value of 0.43 (. sd. 0.21) during the stance phase and exhibited a greater degree of rotational movement than the tibiotalar joint. The mean relative speeds of the subtalar joint in early (0% to 10%) and late (80% to 90%) stance were 23.9 mm/s (. sd. 11.3) and 25.1 mm/s (. sd 9.5). , respectively, which were significantly higher than the mean RS during mid-stance (10% to 80%). Conclusion. The tibiotalar and subtalar joints exhibited significant translational and rotational movement in the initial stance, whereas only the subtalar joint exhibited significant rotational movement during the late stance. The relative movement on the articular surfaces provided deeper insight into the interactions between articular surfaces, which are unobtainable using the joint coordinate system. Cite this article: C-B. Phan, D-P. Nguyen, K. M. Lee, S. Koo. Relative movement on the articular surfaces of the tibiotalar and subtalar joints during walking. Bone Joint Res 2018;7:501–507. DOI: 10.1302/2046-3758.78.BJR-2018-0014.R1


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities. Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint Research
Vol. 5, Issue 10 | Pages 492 - 499
1 Oct 2016
Li X Li M Lu J Hu Y Cui L Zhang D Yang Y

Objectives. To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. Materials and Methods. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05. Results. There was no significant difference between the amount of tooth movement in the young group (0.96, standard deviation (. sd. ) 0.30mm) and that in the adult group (0.80mm, . sd. 0.28) (p > 0.05) after the seven-day force application. On the compression side, the expression of RANKL and TRAP-positive osteoclasts in both the young and the adult groups increased after the application of force for seven days, and then decreased at the end of the seven-day retention period. However, by the end of the period, the expression of RANKL on the compression side dropped to the control level in the young group (p > 0.05), while it was still higher than that on the control side in the adult group (p < 0.05). The expression of RANKL on the compression side did not show significant difference between the young and the adult groups after seven-day force application (p > 0.05), but it was significantly higher in the adult group than that in the young group after seven-day post-orthodontic retention (p < 0.05). Similarly, the decreasing trend of TRAP-positive osteoclasts during the retention period in the adult group was less obvious than that in the young group. Conclusions. The bone-resorptive activity in the young rats was more dynamic than that in the adult rats. The expression of RANKL and the number of osteoclasts in adult rats did not drop to the control level during the post-orthodontic retention period while RANKL expression and the number of osteoclasts in young rats had returned to the baseline. Cite this article: X. Li, M. Li, J. Lu, Y. Hu, L. Cui, D. Zhang, Y. Yang. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res 2016;5:492–499. DOI: 10.1302/2046-3758.510.BJR-2016-0004.R2


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 366 - 372
1 Feb 2021
Sun Z Li J Luo G Wang F Hu Y Fan C

Aims. This study aimed to determine the minimal detectable change (MDC), minimal clinically important difference (MCID), and substantial clinical benefit (SCB) under distribution- and anchor-based methods for the Mayo Elbow Performance Index (MEPI) and range of movement (ROM) after open elbow arthrolysis (OEA). We also assessed the proportion of patients who achieved MCID and SCB; and identified the factors associated with achieving MCID. Methods. A cohort of 265 patients treated by OEA were included. The MEPI and ROM were evaluated at baseline and at two-year follow-up. Distribution-based MDC was calculated with confidence intervals (CIs) reflecting 80% (MDC 80), 90% (MDC 90), and 95% (MDC 95) certainty, and MCID with changes from baseline to follow-up. Anchor-based MCID (anchored to somewhat satisfied) and SCB (very satisfied) were calculated using a five-level Likert satisfaction scale. Multivariate logistic regression of factors affecting MCID achievement was performed. Results. The MDC increased substantially based on selected CIs (MDC 80, MDC 90, and MDC 95), ranging from 5.0 to 7.6 points for the MEPI, and from 8.2° to 12.5° for ROM. The MCID of the MEPI were 8.3 points under distribution-based and 12.2 points under anchor-based methods; distribution- and anchor-based MCID of ROM were 14.1° and 25.0°. The SCB of the MEPI and ROM were 17.3 points and 43.4°, respectively. The proportion of the patients who attained anchor-based MCID for the MEPI and ROM were 74.0% and 94.7%, respectively; furthermore, 64.2% and 86.8% attained SCB. Non-dominant arm (p = 0.022), higher preoperative MEPI rating (p < 0.001), and postoperative visual analogue scale pain score (p < 0.001) were independent predictors of not achieving MCID for the MEPI, while atraumatic causes (p = 0.040) and higher preoperative ROM (p = 0.005) were independent risk factors for ROM. Conclusion. In patients undergoing OEA, the MCID for the increased MEPI is 12.2 points and 25° increased ROM. The SCB is 17.3 points and 43.3°, respectively. Future studies using the MEPI and ROM to assess OEA outcomes should report not only statistical significance but also clinical importance. Cite this article: Bone Joint J 2021;103-B(2):366–372


Bone & Joint Open
Vol. 1, Issue 8 | Pages 465 - 473
1 Aug 2020
Aspinall SK Wheeler PC Godsiff SP Hignett SM Fong DTP

Aims. This study aims to evaluate a new home medical stretching device called the Self Treatment Assisted Knee (STAK) tool to treat knee arthrofibrosis. Methods. 35 patients post-major knee surgery with arthrofibrosis and mean range of movement (ROM) of 68° were recruited. Both the STAK intervention and control group received standard physiotherapy for eight weeks, with the intervention group additionally using the STAK at home. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Oxford Knee Scores (OKS) were collected at all timepoints. An acceptability and home exercise questionnaire capturing adherence was recorded after each of the interventions. Results. Compared to the control group, the STAK intervention group made significant gains in mean ROM (30° versus 8°, p < 0.0005), WOMAC (19 points versus 3, p < 0.0005), and OKS (8 points versus 3, p < 0.0005). The improvements in the STAK group were maintained at long-term follow-up. No patients suffered any complications relating to the STAK, and 96% of patients found the STAK tool ‘perfectly acceptable’. Conclusion. The STAK tool is effective in increasing ROM and reducing pain and stiffness. Patients find it acceptable and adherence to treatment was high. This study indicates that the STAK tool would be of benefit in clinical practice and may offer a new, cost-effective treatment for arthrofibrosis. Cite this article: Bone Joint Open 2020;1-8:465–473


Bone & Joint Research
Vol. 11, Issue 2 | Pages 82 - 90
7 Feb 2022
Eckert JA Bitsch RG Sonntag R Reiner T Schwarze M Jaeger S

Aims. The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the stability of both variants in a worst-case scenario of bone defects and suboptimal cementation. Methods. Single and twin pegs were implanted randomly allocated in 12 pairs of human fresh-frozen femora. We generated 5° bone defects at the posterior condyle. Relative movement was simulated using a servohydraulic pulser, and analyzed at 70°/115° knee flexion. Relative movement was surveyed at seven points of measurement on implant and bone, using an optic system. Results. At the main fixation zone, the twin peg shows less relative movement at 70°/115°. At the transition zone, relative movements are smaller for the single peg for both angles. The single peg shows higher compression at 70° flexion, whereas the twin peg design shows higher compression at 115°. X-displacement is significantly higher for the single peg at 115°. Conclusion. Bony defects should be avoided in OUKA. The twin peg shows high resilience against push-out force and should be preferred over the single peg. Cite this article: Bone Joint Res 2022;11(2):82–90


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Bone & Joint Open
Vol. 5, Issue 1 | Pages 37 - 45
19 Jan 2024
Alm CE Karlsten A Madsen JE Nordsletten L Brattgjerd JE Pripp AH Frihagen F Röhrl SM

Aims. Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Methods. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft. Results. Similar migration profiles were observed in all directions during the course of healing. At one year, eight patients in the SHS group and 12 patients in the TSP group were available for analysis, finding a clinically non-relevant, and statistically non-significant, difference in total translation of 1 mm (95% confidence interval -4.7 to 2.9) in favour of the TSP group. In line with the migration data, no significant differences in clinical outcomes were found. Conclusion. The TSP did not influence the course of healing or postoperative fracture motion compared to SHS alone. Based on our results, routine use of the TSP in AO/OTA 31-A2 trochanteric fractures cannot be recommended. The TSP has been shown, in biomechanical studies, to increase stability in sliding hip screw constructs in both unstable and intermediate stable trochanteric fractures, but the clinical evidence is limited. This study showed no advantage of the TSP in unstable (AO 31-A2) fractures in elderly patients when fracture movement was evaluated with radiostereometric analysis. Cite this article: Bone Jt Open 2024;5(1):37–45


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial migration. No differences were found for the clinical and functional outcomes. Conclusion. The BCR-TKA shows a different kinematic pattern in early flexion/late extension compared to the CR-TKA. The difference between both implants is mostly visible in the flexion phase in which the anterior cruciate ligament is effective; however, both designs fail to fully replicate the motion of a natural knee. The higher migration of the BCR-TKA was concerning and highlights the importance of longer follow-up. Cite this article: Bone Joint J 2023;105-B(1):35–46


Bone & Joint Open
Vol. 5, Issue 3 | Pages 252 - 259
28 Mar 2024
Syziu A Aamir J Mason LW

Aims. Posterior malleolar (PM) fractures are commonly associated with ankle fractures, pilon fractures, and to a lesser extent tibial shaft fractures. The tibialis posterior (TP) tendon entrapment is a rare complication associated with PM fractures. If undiagnosed, TP entrapment is associated with complications, ranging from reduced range of ankle movement to instability and pes planus deformities, which require further surgeries including radical treatments such as arthrodesis. Methods. The inclusion criteria applied in PubMed, Scopus, and Medline database searches were: all adult studies published between 2012 and 2022; and studies written in English. Outcome of TP entrapment in patients with ankle injuries was assessed by two reviewers independently. Results. Four retrospective studies and eight case reports were accepted in this systematic review. Collectively there were 489 Pilon fractures, 77 of which presented with TP entrapment (15.75%). There were 28 trimalleolar fractures, 12 of which presented with TP entrapment (42.86%). All the case report studies reported inability to reduce the fractures at initial presentation. The diagnosis of TP entrapment was made in the early period in two (25%) cases, and delayed diagnosis in six (75%) cases reported. Using modified Clavien-Dindo complication classification, 60 (67%) of the injuries reported grade IIIa complications and 29 (33%) grade IIIb complications. Conclusion. TP tendon was the commonest tendon injury associated with pilon fracture and, to a lesser extent, trimalleolar ankle fracture. Early identification using a clinical suspicion and CT imaging could lead to early management of TP entrapment in these injuries, which could lead to better patient outcomes and reduced morbidity. Cite this article: Bone Jt Open 2024;5(3):252–259


Bone & Joint Open
Vol. 4, Issue 3 | Pages 205 - 209
16 Mar 2023
Jump CM Mati W Maley A Taylor R Gratrix K Blundell C Lane S Solanki N Khan M Choudhry M Shetty V Malik RA Charalambous CP

Aims. Frozen shoulder is a common, painful condition that results in impairment of function. Corticosteroid injections are commonly used for frozen shoulder and can be given as glenohumeral joint (GHJ) injection or suprascapular nerve block (SSNB). Both injection types have been shown to significantly improve shoulder pain and range of motion. It is not currently known which is superior in terms of relieving patients’ symptoms. This is the protocol for a randomized clinical trial to investigate the clinical effectiveness of corticosteroid injection given as either a GHJ injection or SSNB. Methods. The Therapeutic Injections For Frozen Shoulder (TIFFS) study is a single centre, parallel, two-arm, randomized clinical trial. Participants will be allocated on a 1:1 basis to either a GHJ corticosteroid injection or SSNB. Participants in both trial arms will then receive physiotherapy as normal for frozen shoulder. The primary analysis will compare the Oxford Shoulder Score (OSS) at three months after injection. Secondary outcomes include OSS at six and 12 months, range of shoulder movement at three months, and Numeric Pain Rating Scale, abbreviated Disabilities of Arm, Shoulder and Hand score, and EuroQol five-level five-dimension health index at three months, six months, and one year after injection. A minimum of 40 patients will be recruited to obtain 80% power to detect a minimally important difference of ten points on the OSS between the groups at three months after injection. The study is registered under ClinicalTrials.gov with the identifier NCT04965376. Conclusion. The results of this trial will demonstrate if there is a difference in shoulder pain and function after GHJ injection or SSNB in patients with frozen shoulder. This will help provide effective treatment to patients with frozen shoulder. Cite this article: Bone Jt Open 2023;4(3):205–209


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims. We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. Methods. Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature. Results. We identified three PMOP-related subtypes and four core modules. The muscle system process, muscle contraction, and actin filament-based movement were more active in the hub genes. We obtained five feature genes related to PMOP. Our analysis verified that the gene signature had good predictive power and applicability. The outcomes of the GSE56815 cohort were found to be consistent with the results of the earlier studies. qRT-PCR results showed that RAB2A and FYCO1 were amplified in clinical samples. Conclusion. The PMOP-related gene signature we developed and verified can accurately predict the risk of PMOP in patients. These results can elucidate the molecular mechanism of RAB2A and FYCO1 underlying PMOP, and yield new and improved treatment strategies, ultimately helping PMOP monitoring. Cite this article: Bone Joint Res 2022;11(8):548–560


Bone & Joint Open
Vol. 5, Issue 3 | Pages 162 - 173
4 Mar 2024
Di Mascio L Hamborg T Mihaylova B Kassam J Shah B Stuart B Griffin XL

Aims. Is it feasible to conduct a definitive multicentre trial in community settings of corticosteroid injections (CSI) and hydrodilation (HD) compared to CSI for patients with frozen shoulder? An adequately powered definitive randomized controlled trial (RCT) delivered in primary care will inform clinicians and the public whether hydrodilation is a clinically and cost-effective intervention. In this study, prior to a full RCT, we propose a feasibility trial to evaluate recruitment and retention by patient and clinician willingness of randomization; rates of withdrawal, crossover and attrition; and feasibility of outcome data collection from routine primary and secondary care data. Methods. In the UK, the National Institute for Health and Care Excellence (NICE) advises that prompt early management of frozen shoulder is initiated in primary care settings with analgesia, physiotherapy, and joint injections; most people can be managed without an operation. Currently, there is variation in the type of joint injection: 1) CSI, thought to reduce the inflammation of the capsule reducing pain; and 2) HD, where a small volume of fluid is injected into the shoulder joint along with the steroid, aiming to stretch the capsule of the shoulder to improve pain, but also allowing greater movement. The creation of musculoskeletal hubs nationwide provides infrastructure for the early and effective management of frozen shoulder. This potentially reduces costs to individuals and the wider NHS perhaps negating the need for a secondary care referral. Results. We will conduct a multicentre RCT comparing CSI and HD in combination with CSI alone. Patients aged 18 years and over with a clinical diagnosis of frozen shoulder will be randomized and blinded to receive either CSI and HD in combination, or CSI alone. Feasibility outcomes include the rate of randomization as a proportion of eligible patients and the ability to use routinely collected data for outcome evaluation. This study has involved patients and the public in the trial design, dissemination methods, and how to include groups who are underserved by research. Conclusion. We will disseminate findings among musculoskeletal clinicians via the British Orthopaedic Association, the Chartered Society of Physiotherapy, the Royal College of Radiologists, and the Royal College of General Practitioners. To ensure wide reach we will communicate findings through our established network of charities and organizations, in addition to preparing dissemination findings in Bangla and Urdu (commonly spoken languages in northeast London). If a full trial is shown to be feasible, we will seek additional National Institute for Health and Care Research funding for a definitive RCT. This definitive study will inform NICE guidelines for the management of frozen shoulder. Cite this article: Bone Jt Open 2024;5(3):162–173


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims. This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. Methods. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert. Results. Anterior post-cam contact in BCS TKA was observed with the knee near full extension if PTS was 6° or more. BCS TKA showed a bicondylar roll forward movement from 86° to mid-flexion, and two different patterns from mid-flexion to knee extension: screw home movement without anterior post-cam contact and bicondylar roll forward movement after anterior post-cam contact. Knee kinematics in the simulation showed similar trends to the clinical in vivo data and were almost within the range of inter-specimen variability. Conclusion. Postoperative knee kinematics in BCS TKA differed according to PTS and anterior post-cam contact; in particular, anterior post-cam contact changed knee kinematics, which may affect the patient’s perception of the knee during activities. Cite this article: Bone Joint Res 2020;9(11):761–767


Aims. Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm. 2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus. Methods. Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans. Results. A total of 40 patients were enrolled and randomly divided into the two groups, with 20 in each. There was no statistically significant difference in the baseline characteristics of the groups. No complications, such as wound infection or neurovascular injury, were found during follow-up of 12 months. The mean AOFAS scores in the rESWT group were significantly higher than those in the control group at three, six, and 12 months postoperatively (p < 0.05). The mean VAS pain scores in the rESWT group were also significantly lower than those in the control group at these times (p < 0.05). The mean area of bone marrow oedema in the rESWT group was significantly smaller at six and 12 months than in the control group at these times (p < 0.05). Conclusion. Local shockwave therapy was safe and effective in patients with osteochondiritis of the talus who were treated with a combination of arthroscopic surgery and rESWT. Preliminary results showed that, compared with arthroscopic microfracture alone, those treated with arthroscopic microfracture combined with rESWT had better relief of pain at three months postoperatively and improved weightbearing and motor function of the ankle. Cite this article: Bone Joint J 2023;105-B(10):1108–1114


Bone & Joint Open
Vol. 3, Issue 8 | Pages 618 - 622
1 Aug 2022
Robinson AHN Garg P Kirmani S Allen P

Aims. Diabetic foot care is a significant burden on the NHS in England. We have conducted a nationwide survey to determine the current participation of orthopaedic surgeons in diabetic foot care in England. Methods. A questionnaire was sent to all 136 NHS trusts audited in the 2018 National Diabetic Foot Audit (NDFA). The questionnaire asked about the structure of diabetic foot care services. Results. Overall, 123 trusts responded, of which 117 admitted patients with diabetic foot disease and 113 had an orthopaedic foot and ankle surgeon. A total of 90 trusts (77%) stated that the admission involved medicine, with 53 (45%) of these admissions being exclusively under medicine, and 37 (32%) as joint admissions. Of the joint admissions, 16 (14%) were combined with vascular and 12(10%) with orthopaedic surgery. Admission is solely under vascular surgery in 12 trusts (10%) and orthopaedic surgery in 7 (6%). Diabetic foot abscesses were drained by orthopaedic surgeons in 61 trusts (52%) and vascular surgeons in 47 (40%). Conclusion. Orthopaedic surgeons make a significant contribution to both acute and elective diabetic foot care currently in the UK. This contribution is likely to increase with the movement of vascular surgery to a hub and spoke model, and measures should be put in place to increase the team based approach to the diabetic foot, for example with the introduction of a best practice tariff. Cite this article: Bone Jt Open 2022;3(8):618–622


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1438 - 1445
1 Nov 2020
Jang YH Lee JH Kim SH

Aims. Scapular notching is thought to have an adverse effect on the outcome of reverse total shoulder arthroplasty (RTSA). However, the matter is still controversial. The aim of this study was to determine the clinical impact of scapular notching on outcomes after RTSA. Methods. Three electronic databases (PubMed, Cochrane Database, and EMBASE) were searched for studies which evaluated the influence of scapular notching on clinical outcome after RTSA. The quality of each study was assessed. Functional outcome scores (the Constant-Murley scores (CMS), and the American Shoulder and Elbow Surgeons (ASES) scores), and postoperative range of movement (forward flexion (FF), abduction, and external rotation (ER)) were extracted and subjected to meta-analysis. Effect sizes were expressed as weighted mean differences (WMD). Results. In all, 11 studies (two level III and nine level IV) were included in the meta-analysis. All analyzed variables indicated that scapular notching has a negative effect on the outcome of RTSA . Statistical significance was found for the CMS (WMD –3.11; 95% confidence interval (CI) –4.98 to –1.23), the ASES score (WMD –6.50; 95% CI –10.80 to –2.19), FF (WMD –6.3°; 95% CI –9.9° to –2.6°), and abduction (WMD –9.4°; 95% CI –17.8° to –1.0°), but not for ER (WMD –0.6°; 95% CI –3.7° to 2.5°). Conclusion. The current literature suggests that patients with scapular notching after RTSA have significantly worse results when evaluated by the CMS, ASES score, and range of movement in flexion and abduction. Cite this article: Bone Joint J 2020;102-B(11):1438–1445


Bone & Joint Open
Vol. 3, Issue 1 | Pages 93 - 97
10 Jan 2022
Kunze KN Orr M Krebs V Bhandari M Piuzzi NS

Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality


Bone & Joint Research
Vol. 10, Issue 4 | Pages 250 - 258
1 Apr 2021
Kwak D Bang S Lee S Park J Yoo J

Aims. There are concerns regarding initial stability and early periprosthetic fractures in cementless hip arthroplasty using short stems. This study aimed to investigate stress on the cortical bone around the stem and micromotions between the stem and cortical bone according to femoral stem length and positioning. Methods. In total, 12 femoral finite element models (FEMs) were constructed and tested in walking and stair-climbing. Femoral stems of three different lengths and two different positions were simulated, assuming press-fit fixation within each FEM. Stress on the cortical bone and micromotions between the stem and bone were measured in each condition. Results. Stress concentration was observed on the medial and lateral interfaces between the cortical bone and stem. With neutral stem insertion, mean stress over a region of interest was greater at the medial than lateral interface regardless of stem length, which increased as the stem shortened. Mean stress increased in the varus-inserted stems compared to the stems inserted neutrally, especially at the lateral interface in contact with the stem tip. The maximum stress was observed at the lateral interface in a varus-inserted short stem. All mean stresses were greater in stair-climbing condition than walking. Each micromotion was also greater in shorter stems and varus-inserted stems, and in stair-climbing condition. Conclusion. The stem should be inserted neutrally and stair-climbing movement should be avoided in the early postoperative period, in order to preserve early stability and reduce the possibility of thigh pain, especially when using a shorter stem. Cite this article: Bone Joint Res 2021;10(4):250–258