Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.Aims
Methods
The primary aim of this study was to describe a baseline comparison of early knee-specific functional outcomes following revision total knee arthroplasty (TKA) using metaphyseal sleeves with a matched cohort of patients undergoing primary TKA. The secondary aim was to compare incidence of complications and length of stay (LOS) between the two groups. Patients undergoing revision TKA for all diagnoses between 2009 and 2016 had patient-reported outcome measures (PROMs) collected prospectively. PROMs consisted of the American Knee Society Score (AKSS) and Short-Form 12 (SF-12). The study cohort was identified retrospectively and demographics were collected. The cohort was matched to a control group of patients undergoing primary TKA.Introduction
Methods
The aim of this study was to report the outcomes of different treatment options for glenoid loosening following reverse shoulder arthroplasty (RSA) at a minimum follow-up of two years. We retrospectively studied the records of 79 patients (19 men, 60 women; 84 shoulders) aged 70.4 years (21 to 87) treated for aseptic loosening of the glenosphere following RSA. Clinical evaluation included pre- and post-treatment active anterior elevation (AAE), external rotation, and Constant score.Aims
Patients and Methods
Preservation of posterior condylar offset (PCO) has been shown to correlate with improved functional results after primary total knee arthroplasty (TKA). Whether this is also the case for revision TKA, remains unknown. The aim of this study was to assess the independent effect of PCO on early functional outcome after revision TKA. A total of 107 consecutive aseptic revision TKAs were performed by a single surgeon during an eight-year period. The mean age was 69.4 years (39 to 85) and there were 59 female patients and 48 male patients. The Oxford Knee Score (OKS) and Short-form (SF)-12 score were assessed pre-operatively and one year post-operatively. Patient satisfaction was also assessed at one year. Joint line and PCO were assessed radiographically at one year.Objectives
Methods
Instability is the reason for revision of a primary
total knee replacement (TKR) in 20% of patients. To date, the diagnosis
of instability has been based on the patient’s symptoms and a subjective
clinical assessment. We assessed whether a measured standardised
forced leg extension could be used to quantify instability. A total of 25 patients (11 male/14 female, mean age 70 years;
49 to 85) who were to undergo a revision TKR for instability of
a primary implant were assessed with a Nottingham rig pre-operatively
and then at six and 26 weeks post-operatively. Output was quantified
(in revolutions per minute (rpm)) by accelerating a stationary flywheel.
A control group of 183 patients (71 male/112 female, mean age 69
years) who had undergone primary TKR were evaluated for comparison. Pre-operatively, all 25 patients with instability exhibited a
distinctive pattern of reduction in ‘mid-push’ speed. The mean reduction
was 55 rpm ( Cite this article: