Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims

In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

Methods

This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 315 - 328
5 May 2023
De Klerk TC Dounavi DM Hamilton DF Clement ND Kaliarntas KT

Aims

The aim of this study was to determine the effectiveness of home-based prehabilitation on pre- and postoperative outcomes in participants awaiting total knee (TKA) and hip arthroplasty (THA).

Methods

A systematic review with meta-analysis of randomized controlled trials (RCTs) of prehabilitation interventions for TKA and THA. MEDLINE, CINAHL, ProQuest, PubMed, Cochrane Library, and Google Scholar databases were searched from inception to October 2022. Evidence was assessed by the PEDro scale and the Cochrane risk-of-bias (ROB2) tool.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims. The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Methods. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency. Results. IBA1 and cyclin D1 in the ipsilateral spinal horn increased in a time-dependent fashion. Spinal microglia proliferated in BCP rats. The microglia inhibitor minocycline attenuated the pain behaviour in BCP rats. The cyclin-dependent kinase inhibitor flavopiridol inhibited the proliferation of spinal microglia, and was associated with an improvement in pain behaviour in BCP rats. Conclusion. Our results revealed that the inhibition of spinal microglial proliferation was associated with a decrease in pain behaviour in a rat model of BCP. Cyclin D1 acts as a key regulator of the proliferation of spinal microglia in a rat model of BCP. Disruption of cyclin D1, the restriction-point control of cell cycle, inhibited the proliferation of microglia and attenuated the pain behaviours in BCP rats. Cyclin D1 and the proliferation of spinal microglia may be potential targets for the clinical treatment of BCP. Cite this article: Bone Joint Res 2022;11(11):803–813


Bone & Joint Open
Vol. 1, Issue 8 | Pages 465 - 473
1 Aug 2020
Aspinall SK Wheeler PC Godsiff SP Hignett SM Fong DTP

Aims

This study aims to evaluate a new home medical stretching device called the Self Treatment Assisted Knee (STAK) tool to treat knee arthrofibrosis.

Methods

35 patients post-major knee surgery with arthrofibrosis and mean range of movement (ROM) of 68° were recruited. Both the STAK intervention and control group received standard physiotherapy for eight weeks, with the intervention group additionally using the STAK at home. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Oxford Knee Scores (OKS) were collected at all timepoints. An acceptability and home exercise questionnaire capturing adherence was recorded after each of the interventions.


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 45 - 48
1 Oct 2015
Lavand'homme P Thienpont E

The patient with a painful arthritic knee awaiting total knee arthroplasty (TKA) requires a multidisciplinary approach. Optimal control of acute post-operative pain and the prevention of chronic persistent pain remains a challenge. The aim of this paper is to evaluate whether stratification of patients can help identify those who are at particular risk for severe acute or chronic pain.

Intense acute post-operative pain, which is itself a risk factor for chronic pain, is more common in younger, obese female patients and those suffering from central pain sensitisation. Pre-operative pain, in the knee or elsewhere in the body, predisposes to central sensitisation. Pain due to osteoarthritis of the knee may also trigger neuropathic pain and may be associated with chronic medication like opioids, leading to a state of nociceptive sensitisation called ‘opioid-induced hyperalgesia’. Finally, genetic and personality related risk factors may also put patients at a higher risk for the development of chronic pain.

Those identified as at risk for chronic pain would benefit from specific peri-operative management including reduction in opioid intake pre-operatively, the peri-operative use of antihyperalgesic drugs such as ketamine and gabapentinoids, and a close post-operative follow-up in a dedicated chronic pain clinic.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):45–8.