Advertisement for orthosearch.org.uk
Results 1 - 20 of 60
Results per page:
Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims. To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI). Methods. A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001). Results. Infection was eradicated in 45 patients overall (90%). The PG had a better knee range of motion (ROM) and Knee Society Score (KSS) after the first-stage revision (p = 0.004; p = 0.002), while both groups had similar ROMs and KSSs at the last follow-up (p = 0.136; p = 0.895). The KSS in the CG was significantly better at the last follow-up (p = 0.013), while a larger percentage (10 in 17, 58.82%) of patients in the PG chose to retain the spacer (p = 0.008). Conclusion. Prosthetic spacers and cement spacers are both effective at treating chronic kPJI because they encourage infection control, and the former improved knee function status between stages. For some patients, prosthetic spacers may not require reimplantation. Cite this article: Bone Joint Res 2024;13(6):306–314


Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims. In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Methods. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule. Results. The medial and lateral arms of the iliofemoral ligament generated the highest inbound force vector in positions combining extension and adduction providing anterior stability. The ischiofemoral ligament generated the highest inbound force in flexion with adduction and internal rotation (FADIR), reducing the risk of posterior dislocation. In this position the hip joint reaction force moved 0.8° inbound per Nm of internal capsular restraint, preventing edge loading. Conclusion. The capsular ligaments contribute to keep the joint force vector inbound from the edge of the acetabulum at extreme ROM. Preservation and appropriate tensioning of these structures following any type of hip surgery may be crucial to minimizing complications related to joint instability. Cite this article: Bone Joint Res 2021;10(9):594–601


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


Bone & Joint Research
Vol. 10, Issue 6 | Pages 354 - 362
1 Jun 2021
Luo Y Zhao X Yang Z Yeersheng R Kang P

Aims. The purpose of this study was to examine the efficacy and safety of carbazochrome sodium sulfonate (CSS) combined with tranexamic acid (TXA) on blood loss and inflammatory responses after primary total hip arthroplasty (THA), and to investigate the influence of different administration methods of CSS on perioperative blood loss during THA. Methods. This study is a randomized controlled trial involving 200 patients undergoing primary unilateral THA. A total of 200 patients treated with intravenous TXA were randomly assigned to group A (combined intravenous and topical CSS), group B (topical CSS), group C (intravenous CSS), or group D (placebo). Results. Mean total blood loss (TBL) in groups A (605.0 ml (SD 235.9)), B (790.9 ml (SD 280.7)), and C (844.8 ml (SD 248.1)) were lower than in group D (1,064.9 ml (SD 318.3), p < 0.001). We also found that compared with group D, biomarker level of inflammation, transfusion rate, pain score, and hip range of motion at discharge in groups A, B, and C were significantly improved. There were no differences among the four groups in terms of intraoperative blood loss (IBL), intramuscular venous thrombosis (IMVT), and length of hospital stay (LOS). Conclusion. The combined application of CSS and TXA is more effective than TXA alone in reducing perioperative blood loss and transfusion rates, inflammatory response, and postoperative hip pain, results in better early hip flexion following THA, and did not increase the associated venous thromboembolism (VTE) events. Intravenous combined with topical injection of CSS was superior to intravenous or topical injection of CSS alone in reducing perioperative blood loss. Cite this article: Bone Joint Res 2021;10(6):354–362


Bone & Joint Research
Vol. 9, Issue 8 | Pages 477 - 483
1 Aug 2020
Holweg P Herber V Ornig M Hohenberger G Donohue N Puchwein P Leithner A Seibert F

Aims. This study is a prospective, non-randomized trial for the treatment of fractures of the medial malleolus using lean, bioabsorbable, rare-earth element (REE)-free, magnesium (Mg)-based biodegradable screws in the adult skeleton. Methods. A total of 20 patients with isolated, bimalleolar, or trimalleolar ankle fractures were recruited between July 2018 and October 2019. Fracture reduction was achieved through bioabsorbable Mg-based screws composed of pure Mg alloyed with zinc (Zn) and calcium (Ca) ( Mg-Zn0.45-Ca0.45, in wt.%; ZX00). Visual analogue scale (VAS) and the presence of complications (adverse events) during follow-up (12 weeks) were used to evaluate the clinical outcomes. The functional outcomes were analyzed through the range of motion (ROM) of the ankle joint and the American Orthopaedic Foot and Ankle Society (AOFAS) score. Fracture reduction and gas formation were assessed using several plane radiographs. Results. The follow-up was performed after at least 12 weeks. The mean difference in ROM of the talocrural joint between the treated and the non-treated sites decreased from 39° (SD 12°) after two weeks to 8° (SD 11°) after 12 weeks (p ≤ 0.05). After 12 weeks, the mean AOFAS score was 92.5 points (SD 4.1). Blood analysis revealed that Mg and Ca were within a physiologically normal range. All ankle fractures were reduced and stabilized sufficiently by two Mg screws. A complete consolidation of all fractures was achieved. No loosening or breakage of screws was observed. Conclusion. This first prospective clinical investigation of fracture reduction and fixation using lean, bioabsorbable, REE-free ZX00 screws showed excellent clinical and functional outcomes. Cite this article: Bone Joint Res 2020;9(8):477–483


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


Bone & Joint Research
Vol. 9, Issue 6 | Pages 322 - 332
1 Jun 2020
Zhao H Yeersheng R Kang X Xia Y Kang P Wang W

Aims. The aim of this study was to examine whether tourniquet use can improve perioperative blood loss, early function recovery, and pain after primary total knee arthroplasty (TKA) in the setting of multiple-dose intravenous tranexamic acid. Methods. This was a prospective, randomized clinical trial including 180 patients undergoing TKA with multiple doses of intravenous tranexamic acid. One group was treated with a tourniquet during the entire procedure, the second group received a tourniquet during cementing, and the third group did not receive a tourniquet. All patients received the same protocol of intravenous tranexamic acid (20 mg/kg) before skin incision, and three and six hours later (10 mg/kg). The primary outcome measure was perioperative blood loss. Secondary outcome measures were creatine kinase (CK), CRP, interleukin-6 (IL-6), visual analogue scale (VAS) pain score, limb swelling ratio, quadriceps strength, straight leg raising, range of motion (ROM), American Knee Society Score (KSS), and adverse events. Results. The mean total blood loss was lowest in the no-tourniquet group at 867.32 ml (SD 201.11), increased in the limited-tourniquet group at 1024.35 ml (SD 176.35), and was highest in the tourniquet group at 1,213.00 ml (SD 211.48). The hidden blood loss was lowest in the no-tourniquet group (both p < 0.001). There was less mean intraoperative blood loss in the tourniquet group (77.48 ml (SD 24.82)) than in the limited-tourniquet group (137.04 ml (SD 26.96)) and the no-tourniquet group (212.99 ml (SD 56.35); both p < 0.001). Patients in the tourniquet group showed significantly higher levels of muscle damage and inflammation biomarkers such as CK, CRP, and IL-6 than the other two groups (p < 0.05). Outcomes for VAS pain scores, limb swelling ratio, quadriceps strength, straight leg raising, ROM, and KSS were significantly better in the no-tourniquet group at three weeks postoperatively (p < 0.05), but there were no significant differences at three months. No significant differences were observed among the three groups with respect to transfusion rate, thrombotic events, or the length of hospital stay. Conclusion. Patients who underwent TKA with multiple doses of intravenous tranexamic acid but without a tourniquet presented lower total blood loss and hidden blood loss, and they showed less postoperative inflammation reaction, less muscle damage, lower VAS pain score, and better early knee function. Our results argue for not using a tourniquet during TKA. Cite this article: Bone Joint Res 2020;9(6):322–332


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

Methods

The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 294 - 305
20 Apr 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims

Open lower limb fracture is life-changing, resulting in substantial morbidity and resource demand, while inconsistent outcome-reporting hampers systematic review and meta-analysis. A core outcome set establishes consensus among key stakeholders for the recommendation of a minimum set of outcomes. This study aims to define a core outcome set for adult open lower limb fracture.

Methods

Candidate outcomes were identified from a previously published systematic review and a secondary thematic analysis of 25 patient interviews exploring the lived experience of recovery from open lower limb fracture. Outcomes were categorized and sequentially refined using healthcare professional and patient structured discussion groups. Consensus methods included a multi-stakeholder two-round online Delphi survey and a consensus meeting attended by a purposive sample of stakeholders, facilitated discussion, and voting using a nominal group technique.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims

An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise.

Methods

A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.