Advertisement for orthosearch.org.uk
Results 1 - 20 of 147
Results per page:
Bone & Joint Research
Vol. 5, Issue 9 | Pages 379 - 386
1 Sep 2016
Pahuta M Smolders JM van Susante JL Peck J Kim PR Beaule PE

Objectives. Alarm over the reported high failure rates for metal-on-metal (MoM) hip implants as well as their potential for locally aggressive Adverse Reactions to Metal Debris (ARMDs) has prompted government agencies, internationally, to recommend the monitoring of patients with MoM hip implants. Some have advised that a blood ion level >7 µg/L indicates potential for ARMDs. We report a systematic review and meta-analysis of the performance of metal ion testing for ARMDs. Methods. We searched MEDLINE and EMBASE to identify articles from which it was possible to reconstruct a 2 × 2 table. Two readers independently reviewed all articles and extracted data using explicit criteria. We computed a summary receiver operating curve using a Bayesian random-effects hierarchical model. Results. Our literature search returned 575 unique articles; only six met inclusion criteria defined a priori. The discriminative capacity of ion tests was homogeneous across studies but that there was substantial cut-point heterogeneity. Our best estimate of the “true” area under curve (AUC) for metal ion testing is 0.615, with a 95% credible interval of 0.480 to 0.735, thus we can state that the probability that metal ion testing is actually clinically useful with an AUC ≥ 0.75 is 1.7%. Conclusion. Metal ion levels are not useful as a screening test for identifying high risk patients because ion testing will either lead to a large burden of false positive patients, or otherwise marginally modify the pre-test probability. With the availability of more accurate non-invasive tests, we did not find any evidence for using blood ion levels to diagnose symptomatic patients. Cite this article: M. Pahuta, J. M. Smolders, J. L. van Susante, J. Peck, P. R. Kim, P. E. Beaule. Blood metal ion levels are not a useful test for adverse reactions to metal debris: a systematic review and meta-analysis. Bone Joint Res 2016;5:379–386. DOI: 10.1302/2046-3758.59.BJR-2016-0027.R1


Bone & Joint Research
Vol. 9, Issue 11 | Pages 827 - 839
1 Nov 2020
Hameister R Lohmann CH Dheen ST Singh G Kaur C

Aims. This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods. TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results. Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal wear debris. Colocalization of TNF-α with the macrophage marker CD68 and the pan-T cell marker CD3 confirmed TNF-α expression in these cells. Cobalt-treated MM6 cells secreted more TNF-α than control cells, reflecting the role of metal wear products in activating the TNF-α pathway in the myeloid cells. While TNF-α did not alter the immunoexpression of the TNF-receptor 1 (TNF-R1) in SaOs-2 cells, it increased the release of the soluble TNF-receptor 1 (sTNF-R1). There was also evidence for TNF-α-induced apoptosis. TNF-α further elicited the expression of the endoplasmic reticulum stress markers inositol-requiring enzyme (IRE)-1α, binding-immunoglobulin protein (BiP), and endoplasmic oxidoreductin1 (Ero1)-Lα. In addition, TNF-α decreased pro-collagen I α 1 secretion without diminishing its synthesis. TNF-α also induced an inflammatory response in SaOs-2 cells, as evidenced by the release of reactive oxygen and nitrogen species and the proinflammatory cytokine vascular endothelial growth factor. Conclusion. The results suggest a novel osteoblastic mechanism, which could be mediated by TNF-α and may be involved in metal wear debris-induced periprosthetic bone loss. Cite this article: Bone Joint Res 2020;9(11):827–839


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims

Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.

Methods

After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Research
Vol. 10, Issue 6 | Pages 348 - 350
1 Jun 2021
Skinner JA Sabah SA Hart AJ


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


Bone & Joint Research
Vol. 7, Issue 6 | Pages 388 - 396
1 Jun 2018
Langton DJ Sidaginamale RP Joyce TJ Bowsher JG Holland JP Deehan D Nargol AVF Natu S

Objectives. We have encountered patients who developed large joint fluid collections with massive elevations in chromium (Cr) and cobalt (Co) concentrations following metal-on-metal (MoM) hip arthroplasties. In some cases, retrieval analysis determined that these ion concentrations could not be explained simply by the wear rates of the components. We hypothesized that these effects may be associated with aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL). Patients and Methods. We examined the influence of the ALVAL grade on synovial fluid Co and Cr concentrations following adjustment for patient and device variables, including volumetric wear rates. Initially restricting the analysis to include only patients with one MoM hip resurfacing device, we performed multiple regression analyses of prospectively collected data. We then repeated the same statistical approach using results from a larger cohort with different MoM designs, including total hip arthroplasties. Results. In the resurfacing cohort (n = 76), the statistical modelling indicated that the presence of severe ALVAL and a large fluid collection were associated with greater joint fluid Co concentrations after adjustment for volumetric wear rates (p = 0.005). These findings were replicated in the mixed implant group (n = 178), where the presence of severe ALVAL and a large fluid collection were significantly associated with greater fluid Co concentrations (p < 0.001). Conclusion. The development of severe ALVAL is associated with elevations in metal ion concentrations far beyond those expected from the volumetric loss from the prosthetic surfaces. This finding may aid the understanding of the sequence of events leading to soft-tissue reactions following MoM hip arthroplasties. Cite this article: D. J. Langton, R. P. Sidaginamale, T. J. Joyce, J. G. Bowsher, J. P. Holland, D. Deehan, A. V. F. Nargol, S. Natu. Aseptic lymphocyte-dominated vasculitis-associated lesions are related to changes in metal ion handling in the joint capsules of metal-on-metal hip arthroplasties. Bone Joint Res 2018;7:388–396. DOI: 10.1302/2046-3758.76.BJR-2018-0037


Bone & Joint Research
Vol. 2, Issue 5 | Pages 84 - 95
1 May 2013
Sidaginamale RP Joyce TJ Lord JK Jefferson R Blain PG Nargol AVF Langton DJ

Objectives. The aims of this piece of work were to: 1) record the background concentrations of blood chromium (Cr) and cobalt (Co) concentrations in a large group of subjects; 2) to compare blood/serum Cr and Co concentrations with retrieved metal-on-metal (MoM) hip resurfacings; 3) to examine the distribution of Co and Cr in the serum and whole blood of patients with MoM hip arthroplasties; and 4) to further understand the partitioning of metal ions between the serum and whole blood fractions. Methods. A total of 3042 blood samples donated to the local transfusion centre were analysed to record Co and Cr concentrations. Also, 91 hip resurfacing devices from patients who had given pre-revision blood/serum samples for metal ion analysis underwent volumetric wear assessment using a coordinate measuring machine. Linear regression analysis was carried out and receiver operating characteristic curves were constructed to assess the reliability of metal ions to identify abnormally wearing implants. The relationship between serum and whole blood concentrations of Cr and Co in 1048 patients was analysed using Bland-Altman charts. This relationship was further investigated in an in vitro study during which human blood was spiked with trivalent and hexavalent Cr, the serum then separated and the fractions analysed. Results. Only one patient in the transfusion group was found to have a blood Co > 2 µg/l. Blood/Serum Cr and Co concentrations were reliable indicators of abnormal wear. Blood Co appeared to be the most useful clinical test, with a concentration of 4.5 µg/l showing sensitivity and specificity for the detection of abnormal wear of 94% and 95%, respectively. Generated metal ions tended to fill the serum compartment preferentially in vivo and this was replicated in the in vitro study when blood was spiked with trivalent Cr and bivalent Co. Conclusions. Blood/serum metal ion concentrations are reliable indicators of abnormal wear processes. Important differences exist however between elements and the blood fraction under study. Future guidelines must take these differences into account


Bone & Joint Research
Vol. 8, Issue 3 | Pages 146 - 155
1 Mar 2019
Langton DJ Natu S Harrington CF Bowsher JG Nargol AVF

Objectives. We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr. Methods. For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric wear analysis, joint fluid (JF) Co and Cr concentrations, and ALVAL grade (n = 315). Receiver operating characteristic curves were constructed to assess the reliability of the CoCr JFR in identifying severe ALVAL and/or SOTP. For part B, we included only patients with unilateral prostheses who had given matched serum and whole blood samples for Co and Cr analysis (n = 155). Multiple regression was used to examine the influence of JF concentrations on the serum partitioning of Co and Cr in the blood. Results. A CoCr JFR > 1 showed a specificity of 83% (77% to 88%) and sensitivity of 63% (55% to 70%) for the detection of severe ALVAL and/or SOTP. In patients with CoCr JFRs > 1, the median blood Cr to serum Cr ratio was 0.99, compared with 0.71 in patients with CoCr JFRs < 1 (p < 0.001). Regression analysis demonstrated that the blood Cr to serum Cr value was positively associated with the JF Co concentration (p = 0.011) and inversely related to the JF Cr concentration (p < 0.001). Conclusion. Elevations in CoCr JFRs are associated with adverse biological (severe ALVAL) or tribocorrosive processes (SOTP). Comparison of serum Cr with blood Cr concentrations may be a useful additional clinical tool to help to identify these conditions. Cite this article: D. J. Langton, S. Natu, C. F. Harrington, J. G. Bowsher, A. V. F. Nargol. Is the synovial fluid cobalt-to-chromium ratio related to the serum partitioning of metal debris following metal-on-metal hip arthroplasty? Bone Joint Res 2019;8:146–155. DOI: 10.1302/2046-3758.83.BJR-2018-0049.R1


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


Bone & Joint Research
Vol. 6, Issue 7 | Pages 405 - 413
1 Jul 2017
Matharu GS Judge A Murray DW Pandit HG

Objectives. Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. Methods. We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression. Results. Intra-operative complications occurred in 6.0% (n = 11) of the 185 cases. The cumulative four-year patient survival rate was 98.2% (95% CI 92.9 to 99.5). Re-revision surgery was performed in 13.5% (n = 25) of hips at a mean time of 1.2 years (0.1 to 3.1 years) following ARMD revision. Infection (32%; n = 8), dislocation/subluxation (24%; n = 6), and aseptic loosening (24%; n = 6) were the most common re-revision indications. The cumulative four-year implant survival rate was 83.8% (95% CI 76.7 to 88.9). Multivariable analysis identified three predictors of re-revision: multiple revision indications (hazard ratio (HR) = 2.78; 95% CI 1.03 to 7.49; p = 0.043); selective component revisions (HR = 5.76; 95% CI 1.28 to 25.9; p = 0.022); and ceramic-on-polyethylene revision bearings (HR = 3.08; 95% CI 1.01 to 9.36; p = 0.047). Conclusions. Non-MoMHAs revised for ARMD have a high short-term risk of re-revision, with important predictors of future re-revision including selective component revision, multiple revision indications, and ceramic-on-polyethylene revision bearings. Our findings may help counsel patients about the risks of ARMD revision, and guide reconstructive decisions. Future studies attempting to validate the predictors identified should also assess the effects of implant design (metallurgy and modularity), given that this was an important study limitation potentially influencing the reported prognostic factors. Cite this article: G. S. Matharu, A. Judge, D. W. Murray, H. G. Pandit. Outcomes following revision surgery performed for adverse reactions to metal debris in non-metal-on-metal hip arthroplasty patients: Analysis of 185 revisions from the National Joint Registry for England and Wales. Bone Joint Res 2017;6:405–413. DOI: 10.1302/2046-3758.67.BJR-2017-0017.R2


Bone & Joint Research
Vol. 13, Issue 4 | Pages 149 - 156
4 Apr 2024
Rajamäki A Lehtovirta L Niemeläinen M Reito A Parkkinen J Peräniemi S Vepsäläinen J Eskelinen A

Aims. Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium. Methods. Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia. Results. Median metal concentrations were as follows: cobalt: 0.69 μg/g (interquartile range (IQR) 0.10 to 6.10); chromium: 1.1 μg/g (IQR 0.27 to 4.10); and titanium: 1.6 μg/g (IQR 0.90 to 4.07). Moderate ALVAL scores were found in 30% (n = 39) of the revised knees. There were ten patients with an ALVAL score of 6 or more who were revised for suspected periprosthetic joint infection (PJI), aseptic loosening, or osteolysis. R2 varied between 0.269 and 0.369 for the ordinal regression models. The most important variables were model type, indication for revision, and cobalt and chromium in the ordinal regression models. Conclusion. We found that metal particles released from the knee prosthesis can accumulate in the periprosthetic tissues. Several patients revised for suspected culture-negative PJI had features of an ALVAL reaction, which is a novel finding. Therefore, ALVAL-type reactions can also be found around knee prostheses, but they are mostly mild and less common than those found around metal-on-metal prostheses. Cite this article: Bone Joint Res 2024;13(4):149–156


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims. Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration. Methods. Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs. Results. We identified 49 genes in torn supraspinatus tendons associated with advancing age. Among them, five age-related genes showed DE in lesioned tendons compared to normal tendons. Functional analyses and previous studies have highlighted their specific enrichments in biological functions, such as muscle development (e.g. myosin heavy chain 3 (MYH3)), transcription regulation (e.g. CCAAT enhancer binding brotein delta (CEBPD)), and metal ion homeostasis (e.g. metallothionein 1X (MT1X)). Conclusion. This study uncovered molecular aspects of tendon ageing and their potential links to RCT development, offering insights for targeted interventions. These findings enhance our understanding of the mechanisms of tendon degeneration, allowing potential strategies to be made for reducing the incidence of RCT. Cite this article: Bone Joint Res 2024;13(9):474–484


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


Bone & Joint Research
Vol. 7, Issue 11 | Pages 609 - 619
1 Nov 2018
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives. Prosthetic joint infection (PJI) is a devastating complication following total joint arthroplasty. Non-contact induction heating of metal implants is a new and emerging treatment for PJI. However, there may be concerns for potential tissue necrosis. It is thought that segmental induction heating can be used to control the thermal dose and to limit collateral thermal injury to the bone and surrounding tissues. The purpose of this study was to determine the thermal dose, for commonly used metal implants in orthopaedic surgery, at various distances from the heating centre (HC). Methods. Commonly used metal orthopaedic implants (hip stem, intramedullary nail, and locking compression plate (LCP)) were heated segmentally using an induction heater. The thermal dose was expressed in cumulative equivalent minutes at 43°C (CEM43) and measured with a thermal camera at several different distances from the HC. A value of 16 CEM43 was used as the threshold for thermal damage in bone. Results. Despite high thermal doses at the HC (7161 CEM43 to 66 640 CEM43), the thermal dose at various distances from the HC was lower than 16 CEM43 for the hip stem and nail. For the fracture plate without corresponding metal screws, doses higher than 16 CEM43 were measured up to 5 mm from the HC. Conclusion. Segmental induction heating concentrates the thermal dose at the targeted metal implant areas and minimizes collateral thermal injury by using the non-heated metal as a heat sink. Implant type and geometry are important factors to consider, as they influence dissipation of heat and associated collateral thermal injury. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Segmental induction heating of orthopaedic metal implants. Bone Joint Res 2018;7:609–619. DOI: 10.1302/2046-3758.711.BJR-2018-0080.R1


Bone & Joint Research
Vol. 8, Issue 10 | Pages 443 - 450
1 Oct 2019
Treacy RBC Holland JP Daniel J Ziaee H McMinn DJW

Objectives. Modern metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), while achieving good results with well-orientated, well-designed components in ideal patients, is contraindicated in women, men with head size under 50 mm, or metal hypersensitivity. These patients currently have no access to the benefits of HRA. Highly crosslinked polyethylene (XLPE) has demonstrated clinical success in total hip arthroplasty (THA) and, when used in HRA, potentially reduces metal ion-related sequelae. We report the early performance of HRA using a direct-to-bone cementless mono-bloc XLPE component coupled with a cobalt-chrome femoral head, in the patient group for whom HRA is currently contraindicated. Methods. This is a cross-sectional, observational assessment of 88 consecutive metal-on-XLPE HRAs performed in 84 patients between 2015 and 2018 in three centres (three surgeons, including the designer surgeon). Mean follow-up is 1.6 years (0.7 to 3.9). Mean age at operation was 56 years (. sd. 11; 21 to 82), and 73% of implantations were in female patients. All patients were individually counselled, and a detailed informed consent was obtained prior to operation. Primary resurfacing was carried out in 85 hips, and three cases involved revision of previous MoM HRA. Clinical, radiological, and Oxford Hip Score (OHS) assessments were studied, along with implant survival. Results. There was no loss to follow-up and no actual or impending revision or reoperation. Median OHS increased from 24 (interquartile range (IQR) 20 to 28) preoperatively to 48 (IQR 46 to 48) at the latest follow-up (48 being the best possible score). Radiographs showed one patient had a head-neck junction lucency. No other radiolucency, osteolysis, component migration, or femoral neck thinning was noted. Conclusion. The results in this small consecutive cohort suggest that metal-on-monobloc-XLPE HRA is successful in the short term and merits further investigation as a conservative alternative to the current accepted standard of stemmed THA. However, we would stress that survival data with longer-term follow-up are needed prior to widespread adoption. Cite this article: R. B. C. Treacy, J. P. Holland, J. Daniel, H. Ziaee, D. J. W. McMinn. Preliminary report of clinical experience with metal-on-highly-crosslinked-polyethylene hip resurfacing. Bone Joint Res 2019;8:443–450. DOI: 10.1302/2046-3758.810.BJR-2019-0060.R1


Bone & Joint Research
Vol. 10, Issue 1 | Pages 77 - 84
1 Jan 2021
Milstrey A Rosslenbroich S Everding J Raschke MJ Richards RG Moriarty TF Puetzler J

Aims. Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on Staphylococcus aureus biofilms in vitro in the presence and absence of antibiotic agents. Methods. S. aureus biofilms were grown on titanium discs (13 mm × 4 mm) in a bioreactor for 48 hours. Shockwaves were applied with either 250, 500, or 1,000 impulses onto the discs surrounded by either phosphate-buffered saline or antibiotic (rifampin alone or in combination with nafcillin). The number of viable bacteria was determined by quantitative culture after sonication. Representative samples were taken for scanning electron microscopy. Results. The application of fhESWT led to a ten-fold reduction in bacterial counts on the metal discs for all impulse numbers compared to the control (p < 0.001). Increasing the number of impulses did not further reduce bacterial counts in the absence of antibiotics (all p > 0.289). Antibiotics alone reduced the number of bacteria on the discs; however, the combined application of the fhESWT and antibiotic administration further reduced the bacterial count compared to the antibiotic treatment only (p = 0.032). Conclusion. The use of fhESWT significantly reduced the colony-forming unit (CFU) count of a S. aureus biofilm in our model independently, and in combination with antibiotics. Therefore, the supplementary application of fhESWT could be a helpful tool in the treatment of IFIs in certain cases, including infected nonunions. Cite this article: Bone Joint Res 2021;10(1):77–84


Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives. We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Materials and Methods. Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically. Results. At 16 weeks post-operatively, histological scores amongst treatment groups were not statistically different (TMPG: overall 12.7, cartilage 8.6, bone 4.1; TM: overall 14.2, cartilage 9.5, bone 4.9; ED: overall 13.6, cartilage 9.1, bone 4.5). Metal scaffolds were incorporated into the surrounding bone, both in TM and TMPG. The sGAG yield was lower in the neo-cartilage regions compared with the articular cartilage (AC) controls (TMPG 20.8/AC 39.5, TM 25.6/AC 33.3, ED 32.2/AC 40.2 µg sGAG/1 mg respectively), with statistical significance being achieved for the TMPG group (p < 0.05). Hypercellularity of the neo-cartilage was found in TM and ED, as the dsDNA content was significantly higher (p < 0.05) compared with contralateral AC controls (TM 126.7/AC 71.1, ED 99.3/AC 62.8 ng dsDNA/1 mg). The highest type II collagen content was found in neo-cartilage after TM compared with TMPG and ED (TM 60%/TMPG 40%/ED 39%). Inter-treatment differences were not significant. Conclusions. TM is a highly suitable material for the reconstitution of osseous defects. TM enables excellent bony ingrowth and fast integration. However, combined with autologous periosteum, such a biocomposite failed to promote satisfactory neo-cartilage formation. Cite this article: E. H. Mrosek, H-W. Chung, J. S. Fitzsimmons, S. W. O’Driscoll, G. G. Reinholz, J. C. Schagemann. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model. Bone Joint J 2016;5:403–411. DOI: 10.1302/2046-3758.59.BJR-2016-0070.R1


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods. The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results. Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions. The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1