Advertisement for orthosearch.org.uk
Results 1 - 20 of 328
Results per page:
Bone & Joint Research
Vol. 11, Issue 2 | Pages 49 - 60
1 Feb 2022
Li J Wong RMY Chung YL Leung SSY Chow SK Ip M Cheung W

Aims. With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). Methods. A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 10. 4. colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed. Results. Agar plating analysis revealed a higher bacterial load in bone (p = 0.002), and gram staining showed higher cortical bone colonization (p = 0.039) in OVX-Inf compared to Sham-Inf. OVX-Inf showed significantly increased callus area (p = 0.013), but decreased high-density bone volume (p = 0.023) compared to Sham-Inf. IHC staining showed a significantly increased expression of TNF-α in OVX-Inf compared to OVX (p = 0.049). Significantly reduced bacterial load on bone (p = 0.001), enhanced ultimate load (p = 0.001), and energy to failure were observed in Sham-Inf-A compared to Sham-Inf (p = 0.028), but not in OVX-Inf-A compared to OVX-Inf. Conclusion. In osteoporotic bone with FRI, infection was more severe with more bone lysis and higher bacterial load, and fracture-healing was further delayed. Systemic antibiotics significantly reduced bacterial load and enhanced callus quality and strength in normal bone with FRI, but not in osteoporotic bone. Cite this article: Bone Joint Res 2022;11(2):49–60


Bone & Joint Research
Vol. 12, Issue 5 | Pages 331 - 338
16 May 2023
Szymski D Walter N Krull P Melsheimer O Grimberg A Alt V Steinbrueck A Rupp M

Aims. The aim of this investigation was to compare risk of infection in both cemented and uncemented hemiarthroplasty (HA) as well as in total hip arthroplasty (THA) following femoral neck fracture. Methods. Data collection was performed using the German Arthroplasty Registry (EPRD). In HA and THA following femoral neck fracture, fixation method was divided into cemented and uncemented prostheses and paired according to age, sex, BMI, and the Elixhauser Comorbidity Index using Mahalanobis distance matching. Results. Overall in 13,612 cases of intracapsular femoral neck fracture, 9,110 (66.9%) HAs and 4,502 (33.1%) THAs were analyzed. Infection rate in HA was significantly reduced in cases with use of antibiotic-loaded cement compared with uncemented fixated prosthesis (p = 0.013). In patients with THA no statistical difference between cemented and uncemented prosthesis was registered, however after one year 2.4% of infections were detected in uncemented and 2.1% in cemented THA. In the subpopulation of HA after one year, 1.9% of infections were registered in cemented and 2.8% in uncemented HA. BMI (p = 0.001) and Elixhauser Comorbidity Index (p < 0.003) were identified as risk factors of periprosthetic joint infection (PJI), while in THA cemented prosthesis also demonstrated an increased risk within the first 30 days (hazard ratio (HR) = 2.73; p = 0.010). Conclusion. The rate of infection after intracapsular femoral neck fracture was statistically significantly reduced in patients treated by antibiotic-loaded cemented HA. Particularly for patients with multiple risk factors for the development of a PJI, the usage of antibiotic-loaded bone cement seems to be a reasonable procedure for prevention of infection. Cite this article: Bone Joint Res 2023;12(5):331–338


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims. To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI). Methods. A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001). Results. Infection was eradicated in 45 patients overall (90%). The PG had a better knee range of motion (ROM) and Knee Society Score (KSS) after the first-stage revision (p = 0.004; p = 0.002), while both groups had similar ROMs and KSSs at the last follow-up (p = 0.136; p = 0.895). The KSS in the CG was significantly better at the last follow-up (p = 0.013), while a larger percentage (10 in 17, 58.82%) of patients in the PG chose to retain the spacer (p = 0.008). Conclusion. Prosthetic spacers and cement spacers are both effective at treating chronic kPJI because they encourage infection control, and the former improved knee function status between stages. For some patients, prosthetic spacers may not require reimplantation. Cite this article: Bone Joint Res 2024;13(6):306–314


Bone & Joint Research
Vol. 13, Issue 7 | Pages 353 - 361
10 Jul 2024
Gardete-Hartmann S Mitterer JA Sebastian S Frank BJH Simon S Huber S Löw M Sommer I Prinz M Halabi M Hofstaetter JG

Aims. This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool. Methods. Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures. Results. The JI panel detected microorganisms in 7/48 (14.5%) and 15/67 (22.4%) cases related to UNCs and SPCs, respectively, but not in cases of UPCs. The correlation between JI panel detection and infection classification criteria for early/late acute and chronic PJI was 46.6%, 73%, and 40%, respectively. Overall, the JI panel identified 12.6% additional microorganisms and three new species. The JI panel pathogen identification showed a sensitivity and specificity of 41.4% (95% confidence interval (CI) 33.7 to 49.5) and 91.1% (95% CI 84.7 to 94.9), respectively. In total, 19/195 (9.7%) could have been managed differently and more accurately upon JI panel evaluation. Conclusion. Despite its microbial limitation, JI panel demonstrated clinical usefulness by complementing the traditional methods based on multiple cultures, particularly in PJI with unclear microbiological results. Cite this article: Bone Joint Res 2024;13(7):353–361


Bone & Joint Research
Vol. 13, Issue 3 | Pages 127 - 135
22 Mar 2024
Puetzler J Vallejo Diaz A Gosheger G Schulze M Arens D Zeiter S Siverino C Richards RG Moriarty TF

Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological union scale in tibial fractures (mRUST). Results. Greater bacterial burden in the early group compared to the delayed and control groups at revision surgery indicates a retraction of the infection from one to four weeks. Infection was cleared in all animals in the early and delayed groups at euthanasia, but not in the control group. Osteotomies healed in the early group, but bone healing was significantly compromised in the delayed and control groups. Conclusion. The duration of the infection from one to four weeks does not impact the success of infection clearance in this model. Bone healing, however, is impaired as the duration of the infection increases. Cite this article: Bone Joint Res 2024;13(3):127–135


Bone & Joint Research
Vol. 11, Issue 9 | Pages 608 - 618
7 Sep 2022
Sigmund IK Luger M Windhager R McNally MA

Aims. This study evaluated the definitions developed by the European Bone and Joint Infection Society (EBJIS) 2021, the International Consensus Meeting (ICM) 2018, and the Infectious Diseases Society of America (IDSA) 2013, for the diagnosis of periprosthetic joint infection (PJI). Methods. In this single-centre, retrospective analysis of prospectively collected data, patients with an indicated revision surgery after a total hip or knee arthroplasty were included between 2015 and 2020. A standardized diagnostic workup was performed, identifying the components of the EBJIS, ICM, and IDSA criteria in each patient. Results. Of 206 included patients, 101 (49%) were diagnosed with PJI with the EBJIS definition. IDSA and ICM diagnosed 99 (48%) and 86 (42%) as infected, respectively. A total of 84 cases (41%) had an infection based on all three criteria. In 15 cases (n = 15/206; 7%), PJI was present when applying only the IDSA and EBJIS criteria. No infection was detected by one definition alone. Inconclusive diagnoses occurred more frequently with the ICM criteria (n = 30/206; 15%) compared to EBJIS (likely infections: n = 16/206; 8%) (p = 0.029). A better preoperative performance of the EBJIS definition was seen compared with the ICM and IDSA definitions (p < 0.001). Conclusion. The novel EBJIS definition identified all PJIs diagnosed by any other criteria. Use of the EBJIS definition significantly reduced the number of uncertain diagnoses, allowing easier clinical decision-making. Cite this article: Bone Joint Res 2022;11(9):608–618


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


Bone & Joint Research
Vol. 11, Issue 10 | Pages 690 - 699
4 Oct 2022
Lenguerrand E Whitehouse MR Kunutsor SK Beswick AD Baker RP Rolfson O Reed MR Blom AW

Aims. We compared the risks of re-revision and mortality between two-stage revision surgery and single-stage revision surgery among patients with infected primary knee arthroplasty. Methods. Patients with a periprosthetic joint infection (PJI) of their primary knee arthroplasty, initially revised with a single-stage or a two-stage procedure in England and Wales between 2003 and 2014, were identified from the National Joint Registry. We used Poisson regression with restricted cubic splines to compute hazard ratios (HR) at different postoperative periods. The total number of revisions and re-revisions undergone by patients was compared between the two strategies. Results. A total of 489 primary knee arthroplasties were revised with single-stage procedure (1,390 person-years) and 2,377 with two-stage procedure (8,349 person-years). The adjusted incidence rates of all-cause re-revision and for infection were comparable between these strategies (HR overall five years, 1.15 (95% confidence interval (CI) 0.87 to 1.52), p = 0.308; HR overall five years, 0.99 (95% CI 0.70 to 1.39), p = 0.949, respectively). Patients initially managed with single-stage revision received fewer revision procedures overall than after two-stage revision (1.2 vs 2.2, p < 0.001). Mortality was lower for single-stage revision between six and 18 months postoperative (HR at six months, 0.51 (95% CI 0.25 to 1.00), p = 0.049 HR at 18 months, 0.33 (95% CI 0.12 to 0.99), p = 0.048) and comparable at other timepoints. Conclusion. The risk of re-revision was similar between single- and two-stage revision for infected primary knee arthroplasty. Single-stage group required fewer revisions overall, with lower or comparable mortality at specific postoperative periods. The single-stage revision is a safe and effective strategy to treat infected knee arthroplasties. There is potential for increased use to reduce the burden of knee PJI for patients, and for the healthcare system. Cite this article: Bone Joint Res 2022;11(10):690–699


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection. Results. When 10 mM or higher EDTA-NS concentrations were used for ten minutes, over 99% of S. aureus biofilm formed on all three types of materials was eradicated in terms of absorbance measured at 595 nm and colony-forming units (CFUs) after culturing. Consistently, SEM and CSLM scanning demonstrated that less adherence of S. aureus could be observed on all three types of materials after 10 mM EDTA-NS irrigation for ten minutes. In the rat model, compared with NS irrigation combined with rifampin (Ti-6Al-4V wire-implanted rats: 60% bacteria survived; HXLPE particle-implanted rats: 63.3% bacteria survived), EDTA-NS irrigation combined with rifampin produced the highest removal rate (Ti-6Al-4V wire-implanted rats: 3.33% bacteria survived; HXLPE particle-implanted rats: 6.67% bacteria survived). In the pig model, compared with NS irrigation combined with rifampin (Ti-6Al-4V plates: 75% bacteria survived; HXLPE bearings: 87.5% bacteria survived), we observed a similar level of biofilm disruption on Ti-6Al-4V plates (25% bacteria survived) and HXLPE bearings (37.5% bacteria survived) after EDTA-NS irrigation combined with rifampin. The in vivo study revealed that the biomass of S. aureus biofilm was significantly reduced when treated with rifampin following irrigation and debridement, as indicated by both the biofilm bacterial burden and crystal violet staining. EDTA-NS irrigation (10 mM/10 min) combined with rifampin effectively removes S. aureus biofilm-associated infections both in vitro and in vivo. Conclusion. EDTA-NS irrigation with or without antibiotics is effective in eradicating S. aureus biofilm-associated infection both ex and in vivo. Cite this article: Bone Joint Res 2024;13(1):40–51


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Bone & Joint Research
Vol. 13, Issue 8 | Pages 401 - 410
15 Aug 2024
Hu H Ding H Lyu J Chen Y Huang C Zhang C Li W Fang X Zhang W

Aims. This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. Methods. A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not. Results. A total of 147 patients were included in the no-mNGS group and 88 in the mNGS group. The mNGS group had a higher detection rate of rare pathogens than the no-mNGS group (21.6% vs 10.2%, p = 0.016). However, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and higher infection control rates compared with the no-mNGS group (p = 0.017, p = 0.003, and p = 0.028, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.957). In culture-negative cases, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and a higher infection control rate than the no-mNGS group (p = 0.036, p = 0.033, p = 0.022, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.748). Conclusion. mNGS improves detection of rare pathogens in BJIs. mNGS testing reduces antibiotic-related complications, shortens hospital stay and antibiotic use duration, and improves treatment success rate, benefits which are particularly evident in culture-negative cases. Cite this article: Bone Joint Res 2024;13(8):401–410


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims. Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods. For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results. In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion. Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required. Cite this article: Bone Joint Res 2024;13(8):383–391


Bone & Joint Research
Vol. 13, Issue 1 | Pages 19 - 27
5 Jan 2024
Baertl S Rupp M Kerschbaum M Morgenstern M Baumann F Pfeifer C Worlicek M Popp D Amanatullah DF Alt V

Aims. This study aimed to evaluate the clinical application of the PJI-TNM classification for periprosthetic joint infection (PJI) by determining intraobserver and interobserver reliability. To facilitate its use in clinical practice, an educational app was subsequently developed and evaluated. Methods. A total of ten orthopaedic surgeons classified 20 cases of PJI based on the PJI-TNM classification. Subsequently, the classification was re-evaluated using the PJI-TNM app. Classification accuracy was calculated separately for each subcategory (reinfection, tissue and implant condition, non-human cells, and morbidity of the patient). Fleiss’ kappa and Cohen’s kappa were calculated for interobserver and intraobserver reliability, respectively. Results. Overall, interobserver and intraobserver agreements were substantial across the 20 classified cases. Analyses for the variable ‘reinfection’ revealed an almost perfect interobserver and intraobserver agreement with a classification accuracy of 94.8%. The category 'tissue and implant conditions' showed moderate interobserver and substantial intraobserver reliability, while the classification accuracy was 70.8%. For 'non-human cells,' accuracy was 81.0% and interobserver agreement was moderate with an almost perfect intraobserver reliability. The classification accuracy of the variable 'morbidity of the patient' reached 73.5% with a moderate interobserver agreement, whereas the intraobserver agreement was substantial. The application of the app yielded comparable results across all subgroups. Conclusion. The PJI-TNM classification system captures the heterogeneity of PJI and can be applied with substantial inter- and intraobserver reliability. The PJI-TNM educational app aims to facilitate application in clinical practice. A major limitation was the correct assessment of the implant situation. To eliminate this, a re-evaluation according to intraoperative findings is strongly recommended. Cite this article: Bone Joint Res 2024;13(1):19–27


Bone & Joint Research
Vol. 11, Issue 9 | Pages 669 - 678
1 Sep 2022
Clement RGE Hall AC Wong SJ Howie SEM Simpson AHRW

Aims. Staphylococcus aureus is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type S. aureus 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of S. aureus Hla alone with those of the animal’s immune response to infection. Methods. Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 10. 7. colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling. Results. Chondrocyte death was greater with 8325-4 (96.2% (SD 5.5%); p < 0.001) than DU1090 (28.9% (SD 16.0%); p = 0.009) and both were higher than controls (3.8% (SD 1.2%)). Histology revealed cartilage/bone damage with 8325-4 or DU1090 compared to controls (p = 0.010). Both infected groups lost weight (p = 0.006 for both) and experienced limb swelling (p = 0.043 and p = 0.018, respectively). Joints inoculated with bacteria showed significant alterations in gait cycle with a decreased stance phase, increased swing phase, and a corresponding decrease in swing speed. Conclusion. Murine joints inoculated with Hla-producing 8325-4 experienced significantly more chondrocyte death than those with DU1090, which lack the toxin. This was despite similar immune responses, indicating that Hla was the major cause of chondrocyte death. Hla-deficient DU1090 also elevated chondrocyte death compared to controls, suggesting a smaller additional deleterious role of the immune system on cartilage. Cite this article: Bone Joint Res 2022;11(9):669–678


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims. Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (. 99m. Tc-UBI. 29-41. -Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. Methods. 99m. Tc-UBI. 29-41. -Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. Results. Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. Conclusion. The hybrid tracer . 99m. Tc-UBI. 29-41. -Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies. Cite this article: Bone Joint Res 2023;12(1):72–79


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods. Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results. PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion. This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations. Cite this article: Bone Joint Res 2023;12(10):644–653


Bone & Joint Research
Vol. 11, Issue 6 | Pages 342 - 345
1 Jun 2022
Hall AJ Clement ND MacLullich AMJ Simpson AHRW White TO Duckworth AD

Research into COVID-19 has been rapid in response to the dynamic global situation, which has resulted in heterogeneity of methodology and the communication of information. Adherence to reporting standards would improve the quality of evidence presented in future studies, and may ensure that findings could be interpreted in the context of the wider literature. The COVID-19 pandemic remains a dynamic situation, requiring continued assessment of the disease incidence and monitoring for the emergence of viral variants and their transmissibility, virulence, and susceptibility to vaccine-induced immunity. More work is needed to assess the long-term impact of COVID-19 infection on patients who sustain a hip fracture. The International Multicentre Project Auditing COVID-19 in Trauma & Orthopaedics (IMPACT) formed the largest multicentre collaborative audit conducted in orthopaedics in order to provide an emergency response to a global pandemic, but this was in the context of many vital established audit services being disrupted at an early stage, and it is crucial that these resources are protected during future health crises. Rapid data-sharing between regions should be developed, with wider adoption of the revised 2022 Fragility Fracture Network Minimum Common Data Set for Hip Fracture Audit, and a pragmatic approach to information governance processes in order to facilitate cooperation and meta-audit. This editorial aims to: 1) identify issues related to COVID-19 that require further research; 2) suggest reporting standards for studies of COVID-19 and other communicable diseases; 3) consider the requirement of new risk scores for hip fracture patients; and 4) present the lessons learned from IMPACT in order to inform future collaborative studies. Cite this article: Bone Joint Res 2022;11(6):342–345


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims. We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. Methods. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography. Results. The peak concentrations of vancomycin and meropenem in the joint cavity were observed at one hour post-injection, with mean values of 14,933.9 µg/ml (SD 10,176.3) and 5,819.1 µg/ml (SD 6,029.8), respectively. The trough concentrations at 24 hours were 5,495.0 µg/ml (SD 2,360.5) for vancomycin and 186.4 µg/ml (SD 254.3) for meropenem. The half-life of vancomycin was 6 hours, while that of meropenem ranged between 2 and 3.5 hours. No significant adverse events related to the antibiotic administration were observed. Conclusion. This method can achieve sustained high antibiotic concentrations within the joint space, exceeding the reported minimum biofilm eradication concentration. Our study highlights the remarkable effectiveness of intra-articular antibiotic infusion in delivering high intra-articular concentrations of antibiotics. The method provided sustained high antibiotic concentrations within the joint cavity, and no severe side-effects were observed. These findings offer evidence to improve clinical treatment strategies. However, further validation is required through studies with larger sample sizes and higher levels of evidence. Cite this article: Bone Joint Res 2024;13(10):535–545


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli. Results. After immunity training, the levels of pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interleukin (IL)-17A) and chemokines (CCL5, CXCL4, CXCL5, CXCL7, CXCL12) increased significantly in platelet releasate, while the levels of anti-inflammatory cytokines (IL-4, IL-13) decreased. Other platelet-secreted factors (e.g. platelet-derived growth factor (PDGF)-AA, PDGF-AB, PDGF-BB, cathepsin D, serotonin, and histamine) were statistically indistinguishable between the two groups. Transfusion of platelets from trained mice into naïve mice reduced infection risk and bacterial burden after local or systemic challenge with either S. aureus or E. coli. Conclusion. Immunity training altered platelet releasate by increasing the levels of inflammatory cytokines/chemokines and decreasing the levels of anti-inflammatory cytokines. Transfusion of platelets from immunity-trained mice conferred protection against bone and joint infection, suggesting that alteration of platelet releasate might be an important mechanism underlying trained immunity and may have clinical implications. Cite this article: Bone Joint Res 2022;11(2):73–81


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims. This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI). Methods. A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR). Results. SCVs can be isolated from samples collected from chronic PJIs intraoperatively. Transmission electron microscopy (TEM) and immunofluorescence (IF) showed that there was more S. aureus in bone samples collected from chronic PJIs, but much less in bone samples from acute PJIs, providing a potential mechanism of PJI. Immunofluorescence results showed that SCVs of S. aureus were more likely to invade osteoblasts in vitro. Furthermore, TEM and IF also demonstrated that SCVs of S. aureus were more likely to invade and colonize in vivo. Cluster analysis and principal component analysis (PCA) showed that there were substantial differences in gene expression profiles between chronic and acute PJI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes were enriched to chemokine-related signal pathways. PCR also verified these results. Conclusion. Our study has shown that the S. aureus SCVs have a greater ability to invade and colonize in bone, resulting in S. aureus remaining in bone tissues long-term, thus explaining the pathogenesis of chronic PJI. Cite this article: Bone Joint Res 2022;11(12):843–853