Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 422 - 430
15 Mar 2023
Riksaasen AS Kaur S Solberg TK Austevoll I Brox J Dolatowski FC Hellum C Kolstad F Lonne G Nygaard ØP Ingebrigtsen T

Aims. Repeated lumbar spine surgery has been associated with inferior clinical outcomes. This study aimed to examine and quantify the impact of this association in a national clinical register cohort. Methods. This is a population-based study from the Norwegian Registry for Spine surgery (NORspine). We included 26,723 consecutive cases operated for lumbar spinal stenosis or lumbar disc herniation from January 2007 to December 2018. The primary outcome was the Oswestry Disability Index (ODI), presented as the proportions reaching a patient-acceptable symptom state (PASS; defined as an ODI raw score ≤ 22) and ODI raw and change scores at 12-month follow-up. Secondary outcomes were the Global Perceived Effect scale, the numerical rating scale for pain, the EuroQoL five-dimensions health questionnaire, occurrence of perioperative complications and wound infections, and working capability. Binary logistic regression analysis was conducted to examine how the number of previous operations influenced the odds of not reaching a PASS. Results. The proportion reaching a PASS decreased from 66.0% (95% confidence interval (CI) 65.4 to 66.7) in cases with no previous operation to 22.0% (95% CI 15.2 to 30.3) in cases with four or more previous operations (p < 0.001). The odds of not reaching a PASS were 2.1 (95% CI 1.9 to 2.2) in cases with one previous operation, 2.6 (95% CI 2.3 to 3.0) in cases with two, 4.4 (95% CI 3.4 to 5.5) in cases with three, and 6.9 (95% CI 4.5 to 10.5) in cases with four or more previous operations. The ODI raw and change scores and the secondary outcomes showed similar trends. Conclusion. We found a dose-response relationship between increasing number of previous operations and inferior outcomes among patients operated for degenerative conditions in the lumbar spine. This information should be considered in the shared decision-making process prior to elective spine surgery. Cite this article: Bone Joint J 2023;105-B(4):422–430


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims

To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation.

Methods

Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.