Advertisement for orthosearch.org.uk
Results 1 - 20 of 222
Results per page:
Bone & Joint Open
Vol. 5, Issue 8 | Pages 697 - 707
22 Aug 2024
Raj S Grover S Spazzapan M Russell B Jaffry Z Malde S Vig S Fleming S

Aims. The aims of this study were to describe the demographic, socioeconomic, and educational factors associated with core surgical trainees (CSTs) who apply to and receive offers for higher surgical training (ST3) posts in Trauma & Orthopaedics (T&O). Methods. Data collected by the UK Medical Education Database (UKMED) between 1 January 2014 and 31 December 2019 were used in this retrospective longitudinal cohort study comprising 1,960 CSTs eligible for ST3. The primary outcome measures were whether CSTs applied for a T&O ST3 post and if they were subsequently offered a post. A directed acyclic graph was used for detecting confounders and adjusting logistic regression models to calculate odds ratios (ORs), which assessed the association between the primary outcomes and relevant exposures of interest, including: age, sex, ethnicity, parental socioeconomic status (SES), domiciliary status, category of medical school, Situational Judgement Test (SJT) scores at medical school, and success in postgraduate examinations. This study followed STROBE guidelines. Results. Compared to the overall cohort of CSTs, females were significantly less likely to apply to T&O (OR 0.37, 95% CI 0.30 to 0.46; n = 155/720 female vs n = 535/1,240 male; p < 0.001). CSTs who were not UK-domiciled prior to university were nearly twice as likely to apply to T&O (OR 1.99, 95% CI 1.39 to 2.85; n = 50/205 vs not UK-domiciled vs n = 585/1,580 UK-domiciled; p < 0.001). Age, ethnicity, SES, and medical school category were not associated with applying to T&O. Applicants who identified as ‘black and minority ethnic’ (BME) were significantly less likely to be offered a T&O ST3 post (OR 0.70, 95% CI 0.51 to 0.97; n = 165/265 BME vs n = 265/385 white; p = 0.034). Differences in age, sex, SES, medical school category, and SJT scores were not significantly associated with being offered a T&O ST3 post. Conclusion. There is an evident disparity in sex between T&O applicants and an ethnic disparity between those who receive offers on their first attempt. Further high-quality, prospective research in the post-COVID-19 pandemic period is needed to improve equality, diversity, and inclusion in T&O training. Cite this article: Bone Jt Open 2024;5(8):697–707


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Open
Vol. 4, Issue 8 | Pages 602 - 611
21 Aug 2023
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims. To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture. Methods. This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty). Results. Eight female (29%) and 20 male trainees (71%), mean age 29.4 years, performed 317 DHS operations and 243 hemiarthroplasties during ten months of follow-up. Primary analysis was a random effect model with surgeon-level fixed effects of patient condition, patient age, and surgeon experience, with a random intercept for surgeon. Under the intention-to-treat principle, for hemiarthroplasty there was better implant position in favour of cadaveric training, measured by leg length discrepancy ≤ 10 mm (odds ratio (OR) 4.08 (95% confidence interval (CI) 1.17 to 14.22); p = 0.027). There were significantly fewer postoperative blood transfusions required in patients undergoing hemiarthroplasty by cadaveric-trained compared to standard-trained surgeons (OR 6.00 (95% CI 1.83 to 19.69); p = 0.003). For DHS, there was no significant between-group difference in implant position as measured by tip-apex distance ≤ 25 mm (OR 6.47 (95% CI 0.97 to 43.05); p = 0.053). No between-group differences were observed for any secondary clinical outcomes. Conclusion. Trainees randomized to additional cadaveric training performed hip fracture fixation with better implant positioning and fewer postoperative blood transfusions in hemiarthroplasty. This effect, which was previously unknown, may be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):602–611


Bone & Joint Open
Vol. 2, Issue 3 | Pages 181 - 190
1 Mar 2021
James HK Gregory RJH

The imminent introduction of the new Trauma & Orthopaedic (T&O) curriculum, and the implementation of the Improving Surgical Training initiative, reflect yet another paradigm shift in the recent history of trauma and orthopaedic training. The move to outcome-based training without time constraints is a radical departure from the traditional time-based structure and represents an exciting new training frontier. This paper summarizes the history of T&O training reform, explains the rationale for change, and reflects on lessons learnt from the past. Cite this article: Bone Jt Open 2021;2-3:181–190


Bone & Joint Research
Vol. 11, Issue 2 | Pages 121 - 133
22 Feb 2022
Hsu W Lin S Hung J Chen M Lin C Hsu W Hsu WR

Aims. The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. Methods. We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics. Results. After the bioinformatic analysis, the PI3K-Akt signalling pathway and the regulation of actin cytoskeleton in particular were highlighted among the top ten pathways with the most differentially expressed genes involved in the young/MID and MID+ T/MID groups. The expression of Gng5, Atf2, and Rtor in the PI3K-Akt signalling pathway was higher in the young and MID+ T groups compared with the MID group. Similarly, Limk1, Arhgef12, and Araf in the regulation of the actin cytoskeleton pathway had a similar bias. Moreover, the protein expression profiles of Atf2, Rptor, and Ccnd3 in each group were paralleled with the results of NGS. Conclusion. Our results revealed that age-induced muscle loss might result from age-influenced genes that contribute to muscle development in SCs. After resistance training, age-impaired genes were reactivated, and age-induced genes were depressed. The change fold in these genes in the young/MID mice resembled those in the MID + T/MID group, suggesting that resistance training can rejuvenate the self-renewing ability of SCs by recovering age-influenced genes to prevent sarcopenia. Cite this article: Bone Joint Res 2022;11(2):121–133


Bone & Joint Open
Vol. 1, Issue 5 | Pages 98 - 102
6 May 2020
Das De S Puhaindran ME Sechachalam S Wong KJH Chong CW Chin AYH

The COVID-19 pandemic has disrupted all segments of daily life, with the healthcare sector being at the forefront of this upheaval. Unprecedented efforts have been taken worldwide to curb this ongoing global catastrophe that has already resulted in many fatalities. One of the areas that has received little attention amid this turmoil is the disruption to trainee education, particularly in specialties that involve acquisition of procedural skills. Hand surgery in Singapore is a standalone combined programme that relies heavily on dedicated cross-hospital rotations, an extensive didactic curriculum and supervised hands-on training of increasing complexity. All aspects of this training programme have been affected because of the cancellation of elective surgical procedures, suspension of cross-hospital rotations, redeployment of residents, and an unsustainable duty roster. There is a real concern that trainees will not be able to meet their training requirements and suffer serious issues like burnout and depression. The long-term impact of suspending training indefinitely is a severe disruption of essential medical services. This article examines the impact of a global pandemic on trainee education in a demanding surgical speciality. We have outlined strategies to maintain trainee competencies based on the following considerations: 1) the safety and wellbeing of trainees is paramount; 2) resource utilization must be thoroughly rationalized; 3) technology and innovative learning methods must supplant traditional teaching methods; and 4) the changes implemented must be sustainable. We hope that these lessons will be valuable to other training programs struggling to deliver quality education to their trainees, even as we work together to battle this global catastrophe


Bone & Joint Open
Vol. 3, Issue 7 | Pages 549 - 556
1 Jul 2022
Poacher AT Bhachoo H Weston J Shergill K Poacher G Froud J

Aims. Evidence exists of a consistent decline in the value and time that medical schools place upon their undergraduate orthopaedic placements. This limited exposure to trauma and orthopaedics (T&O) during medical school will be the only experience in the speciality for the majority of doctors. This review aims to provide an overview of undergraduate orthopaedic training in the UK. Methods. This review summarizes the relevant literature from the last 20 years in the UK. Articles were selected from database searches using MEDLINE, EMBASE, ERIC, Cochrane, and Web of Science. A total of 16 papers met the inclusion criteria. Results. The length of exposure to T&O is declining; the mean total placement duration of two to three weeks is significantly less than the four- to six-week minimum advised by most relevant sources. The main teaching methods described in the literature included didactic lectures, bedside teaching, and small group case-based discussions. Students preferred interactive, blended learning teaching styles over didactic methods. This improvement in satisfaction was reflected in improvements in student assessment scores. However, studies failed to assess competencies in clinical skills and examinations, which is consistent with the opinions of UK foundation year doctors, approximately 40% of whom report a “poor” understanding of orthopaedics. Furthermore, the majority of UK doctors are not exposed to orthopaedics at the postgraduate level, which only serves to amplify the disparity between junior and generalist knowledge, and the standards expected by senior colleagues and professional bodies. Conclusion. There is a deficit in undergraduate orthopaedic training within the UK which has only worsened in the last 20 years, leaving medical students and foundation doctors with a potentially significant lack of orthopaedic knowledge. Cite this article: Bone Jt Open 2022;3(7):549–556


Bone & Joint Open
Vol. 1, Issue 5 | Pages 103 - 114
13 May 2020
James HK Gregory RJH Tennent D Pattison GTR Fisher JD Griffin DR

Aims. The primary aim of the survey was to map the current provision of simulation training within UK and Republic of Ireland (RoI) trauma and orthopaedic (T&O) specialist training programmes to inform future design of a simulation based-curriculum. The secondary aims were to characterize; the types of simulation offered to trainees by stage of training, the sources of funding for simulation, the barriers to providing simulation in training, and to measure current research activity assessing the educational impact of simulation. Methods. The development of the survey was a collaborative effort between the authors and the British Orthopaedic Association Simulation Group. The survey items were embedded in the Performance and Opportunity Dashboard, which annually audits quality in training across several domains on behalf of the Speciality Advisory Committee (SAC). The survey was sent via email to the 30 training programme directors in March 2019. Data were retrieved and analyzed at the Warwick Clinical Trials Unit, UK. Results. Overall, 28 of 30 programme directors completed the survey (93%). 82% of programmes had access to high-fidelity simulation facilities such as cadaveric laboratories. More than half (54%) had access to a non-technical skills simulation training. Less than half (43%) received centralized funding for simulation, a third relied on local funding such as the departmental budget, and there was a heavy reliance on industry sponsorship to partly or wholly fund simulation training (64%). Provision was higher in the mid-stages (ST3-5) compared to late-stages (ST6-8) of training, and was formally timetabled in 68% of prostgrammes. There was no assessment of the impact of simulation training using objective behavioural measures or real-world clinical outcomes. Conclusion. There is currently widespread, but variable, provision of simulation in T&O training in the UK and RoI, which is likely to expand further with the new curriculum. It is important that research activity into the impact of simulation training continues, to develop an evidence base to support investment in facilities and provision


Bone & Joint Open
Vol. 1, Issue 8 | Pages 494 - 499
18 Aug 2020
Karia M Gupta V Zahra W Dixon J Tayton E

Aims. The aim of this study is to determine the effects of the UK lockdown during the COVID-19 pandemic on the orthopaedic admissions, operations, training opportunities, and theatre efficiency in a large district general hospital. Methods. The number of patients referred to the orthopaedic team between 1 April 2020 and 30 April 2020 were collected. Other data collected included patient demographics, number of admissions, number and type of operations performed, and seniority of primary surgeon. Theatre time was collected consisting of anaesthetic time, surgical time, time to leave theatre, and turnaround time. Data were compared to the same period in 2019. Results. There was a significant increase in median age of admitted patients during lockdown (70.5 (interquartile range (IQR) 46.25 to 84) vs 57 (IQR 27 to 79.75); p = 0.017) with a 26% decrease in referrals from 303 to 224 patients and 37% decrease in admissions from 177 to 112 patients, with a significantly higher proportion of hip fracture admissions (33% (n = 37) vs 19% (n = 34); p = 0.011). Paediatric admissions decreased by 72% from 32 to nine patients making up 8% of admissions during lockdown compared to 18.1% the preceding year (p = 0.002) with 66.7% reduction in paediatric operations, from 18 to 6. There was a significant increase in median turnaround time (13 minutes (IQR 12 to 33) vs 60 minutes (IQR 41 to 71); p < 0.001) although there was no significant difference in the anaesthetic time or surgical time. There was a 38% (61 vs 38) decrease in trainee-led operations. Discussion. The lockdown resulted in large decreases in referrals and admissions. Despite this, hip fracture admissions were unaffected and should remain a priority for trauma service planning in future lockdowns. As plans to resume normal elective and trauma services begin, hospitals should focus on minimising theatre turnaround time to maximize theatre efficiency while prioritizing training opportunities. Clinical relevance. Lockdown has resulted in decreases in the trauma burden although hip fractures remain unaffected requiring priority. Theatre turnaround times and training opportunities are affected and should be optimised prior to the resumption of normal services. Cite this article: Bone Joint Open 2020;1-8:494–499


Bone & Joint Research
Vol. 12, Issue 8 | Pages 455 - 466
1 Aug 2023
Zhou H Chen C Hu H Jiang B Yin Y Zhang K Shen M Wu S Wang Z

Aims. Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR). Methods. Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically. Results. Histological analysis of supraspinatus muscle showed that HIIT improved muscle atrophy, fatty infiltration, and contractile force compared to the no exercise group. In the HIIT groups, supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat showed increased expression of tyrosine hydroxylase and uncoupling protein 1, and upregulated the β3AR thermogenesis pathway. However, the effect of HIIT was not present in mice injected with SR59230A, suggesting that HIIT affected muscles via β3AR. Conclusion. HIIT improved supraspinatus muscle quality and function after rotator cuff tears by activating systemic sympathetic nerve fibre near adipocytes and β3AR. Cite this article: Bone Joint Res 2023;12(8):455–466


Bone & Joint Open
Vol. 3, Issue 6 | Pages 502 - 509
20 Jun 2022
James HK Griffin J Pattison GTR

Aims

To identify a core outcome set of postoperative radiographic measurements to assess technical skill in ankle fracture open reduction internal fixation (ORIF), and to validate these against Van der Vleuten’s criteria for effective assessment.

Methods

An e-Delphi exercise was undertaken at a major trauma centre (n = 39) to identify relevant parameters. Feasibility was tested by two authors. Reliability and validity was tested using postoperative radiographs of ankle fracture operations performed by trainees enrolled in an educational trial (IRCTN 20431944). To determine construct validity, trainees were divided into novice (performed < ten cases at baseline) and intermediate groups (performed ≥ ten cases at baseline). To assess concurrent validity, the procedure-based assessment (PBA) was considered the gold standard. The inter-rater and intrarater reliability was tested using a randomly selected subset of 25 cases.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims. An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise. Methods. A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data. Results. The patient-specific approach with engineered features achieved the highest in-clinic performance for differentiating physiotherapy exercise from non-exercise activity (area under the receiver operating characteristic (AUROC) = 0.924). Including non-exercise data in algorithm training further improved classifier performance (random forest, AUROC = 0.985). The highest accuracy achieved for classifying individual in-clinic exercises was 0.903, using a patient-specific method with deep neural network model extracted features. Grouping exercises by motion type improved exercise classification. For at-home data, OOD detection yielded similar performance with the non-exercise data in the algorithm training (fully convolutional network AUROC = 0.919). Conclusion. Including non-exercise data in algorithm training improves detection of exercises. A patient-specific approach leveraging data from earlier patient-supervised sessions should be considered but is highly dependent on per-patient data quality. Cite this article: Bone Joint Res 2023;12(3):165–177


Aims. Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. Methods. We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs. Results. Overall, 139 ankle fractures were fixed by 28 postgraduate year three to five trainee surgeons (mean age 29.4 years; 71% males) during ten months' follow-up. Under the intention-to-treat principle, a technically superior fixation was performed by the cadaveric-trained group compared to the standard-trained group, as measured on the first postoperative radiograph against predefined acceptability thresholds. The cadaveric-trained group used a lower intraoperative dose of radiation than the standard-trained group (mean difference 0.011 Gym. 2. , 95% confidence interval 0.003 to 0.019; p = 0.009). There was no difference in procedure time. Conclusion. Trainees randomized to cadaveric training performed better ankle fracture fixations and irradiated patients less during surgery compared to standard-trained trainees. This effect, which was previously unknown, is likely to be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):594–601


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes. Cite this article: Bone Jt Open 2024;5(2):94–100


Bone & Joint Open
Vol. 2, Issue 11 | Pages 909 - 920
10 Nov 2021
Smith T Clark L Khoury R Man M Hanson S Welsh A Clark A Hopewell S Pfeiffer K Logan P Crotty M Costa M Lamb SE

Aims. This study aims to assess the feasibility of conducting a pragmatic, multicentre randomized controlled trial (RCT) to test the clinical and cost-effectiveness of an informal caregiver training programme to support the recovery of people following hip fracture surgery. Methods. This will be a mixed-methods feasibility RCT, recruiting 60 patients following hip fracture surgery and their informal caregivers. Patients will be randomized to usual NHS care, versus usual NHS care plus a caregiver-patient dyad training programme (HIP HELPER). This programme will comprise of three, one-hour, one-to-one training sessions for the patient and caregiver, delivered by a nurse, physiotherapist, or occupational therapist. Training will be delivered in the hospital setting pre-patient discharge. It will include practical skills for rehabilitation such as: transfers and walking; recovery goal setting and expectations; pacing and stress management techniques; and introduction to the HIP HELPER Caregiver Workbook, which provides information on recovery, exercises, worksheets, and goal-setting plans to facilitate a ‘good’ recovery. After discharge, patients and caregivers will be supported in delivering rehabilitation through three telephone coaching sessions. Data, collected at baseline and four months post-randomization, will include: screening logs, intervention logs, fidelity checklists, quality assurance monitoring visit data, and clinical outcomes assessing quality of life, physical, emotional, adverse events, and resource use outcomes. The acceptability of the study intervention and RCT design will be explored through qualitative methods with 20 participants (patients and informal caregivers) and 12 health professionals. Discussion. A multicentre recruitment approach will provide greater external validity across population characteristics in England. The mixed-methods approach will permit in-depth examination of the intervention and trial design parameters. The findings will inform whether and how a definitive trial may be undertaken to test the effectiveness of this caregiver intervention for patients after hip fracture surgery. Cite this article: Bone Jt Open 2021;2(11):909–920


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli. Results. After immunity training, the levels of pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interleukin (IL)-17A) and chemokines (CCL5, CXCL4, CXCL5, CXCL7, CXCL12) increased significantly in platelet releasate, while the levels of anti-inflammatory cytokines (IL-4, IL-13) decreased. Other platelet-secreted factors (e.g. platelet-derived growth factor (PDGF)-AA, PDGF-AB, PDGF-BB, cathepsin D, serotonin, and histamine) were statistically indistinguishable between the two groups. Transfusion of platelets from trained mice into naïve mice reduced infection risk and bacterial burden after local or systemic challenge with either S. aureus or E. coli. Conclusion. Immunity training altered platelet releasate by increasing the levels of inflammatory cytokines/chemokines and decreasing the levels of anti-inflammatory cytokines. Transfusion of platelets from immunity-trained mice conferred protection against bone and joint infection, suggesting that alteration of platelet releasate might be an important mechanism underlying trained immunity and may have clinical implications. Cite this article: Bone Joint Res 2022;11(2):73–81


Bone & Joint Open
Vol. 4, Issue 9 | Pages 696 - 703
11 Sep 2023
Ormond MJ Clement ND Harder BG Farrow L Glester A

Aims. The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons. Methods. Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes. Results. The four intersecting themes identified were: 1) validity in traditional research, 2) confusion around the definition of AI, 3) an inability to validate AI research, and 4) cautious optimism about AI research. Underpinning these themes is the notion of a validity heuristic that is strongly rooted in traditional research teaching and embedded in medical and surgical training. Conclusion. Research involving AI sometimes challenges the accepted traditional evidence-based framework. This can give rise to confusion among orthopaedic surgeons, who may be unable to confidently validate findings. In our study, the impact of this was mediated by cautious optimism based on an ingrained validity heuristic that orthopaedic surgeons develop through their medical training. Adding to this, the integration of AI into everyday life works to reduce suspicion and aid acceptance. Cite this article: Bone Jt Open 2023;4(9):696–703


Bone & Joint Open
Vol. 5, Issue 5 | Pages 419 - 425
20 May 2024
Gardner EC Cheng R Moran J Summer LC Emsbo CB Gallagher RG Gong J Fishman FG

Aims. The purpose of this survey study was to examine the demographic and lifestyle factors of women currently in orthopaedic surgery. Methods. An electronic survey was conducted of practising female orthopaedic surgeons based in the USA through both the Ruth Jackson Society and the online Facebook group “Women of Orthopaedics”. Results. The majority of surveyed female orthopaedic surgeons reported being married (76.4%; 285/373) and having children (67.6%; 252/373). In all, 66.5% (247/373) were collegiate athletes; 82.0% (306/373) reported having no female orthopaedic surgeon mentors in undergraduate and medical school. Their mean height is 65.8 inches and average weight is 147.3 lbs. Conclusion. The majority of female orthopaedic surgeons did not have female mentorship during their training. Additionally, biometrically, their build is similar to that of the average American woman. Cite this article: Bone Jt Open 2024;5(5):419–425


Bone & Joint Research
Vol. 13, Issue 10 | Pages 588 - 595
17 Oct 2024
Breu R Avelar C Bertalan Z Grillari J Redl H Ljuhar R Quadlbauer S Hausner T

Aims. The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support. Methods. The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared. Results. At the time of the study, the CNN model showed an area under the receiver operating curve of 0.97. AI assistance improved the physician’s sensitivity (correct fracture detection) from 80% to 87%, and the specificity (correct fracture exclusion) from 91% to 95%. The overall error rate (combined false positive and false negative) was reduced from 14% without AI to 9% with AI. Conclusion. The use of a CNN model as a second opinion can improve the diagnostic accuracy of DRF detection in the study setting. Cite this article: Bone Joint Res 2024;13(10):588–595


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article: Bone Joint Res 2023;12(7):447–454