Aims. This study aimed, through bioinformatics analysis, to identify the potential
Implant-related postoperative spondylodiscitis (IPOS) is a severe complication in spine surgery and is associated with high morbidity and mortality. With growing knowledge in the field of periprosthetic joint infection (PJI), equivalent investigations towards the management of implant-related infections of the spine are indispensable. To our knowledge, this study provides the largest description of cases of IPOS to date. Patients treated for IPOS from January 2006 to December 2020 were included. Patient demographics, parameters upon admission and discharge, radiological imaging, and microbiological results were retrieved from medical records. CT and MRI were analyzed for epidural, paravertebral, and intervertebral abscess formation, vertebral destruction, and endplate involvement. Pathogens were identified by CT-guided or intraoperative biopsy, intraoperative tissue sampling, or implant sonication.Aims
Methods
The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in detecting pathogens from synovial fluid of prosthetic joint infection (PJI) patients. A group of 75 patients who underwent revision knee or hip arthroplasties were enrolled prospectively. Ten patients with primary arthroplasties were included as negative controls. Synovial fluid was collected for mNGS analysis. Optimal thresholds were determined to distinguish pathogens from background microbes. Synovial fluid, tissue, and sonicate fluid were obtained for culture.Aims
Methods
Histology is an established tool in diagnosing periprosthetic joint infections (PJIs). Different thresholds, using various infection definitions and histopathological criteria, have been described. This study determined the performance of different thresholds of polymorphonuclear neutrophils (≥ 5 PMN/HPF, ≥ 10 PMN/HPF, ≥ 23 PMN/10 HPF) , when using the European Bone and Joint Infection Society (EBJIS), Infectious Diseases Society of America (IDSA), and the International Consensus Meeting (ICM) 2018 criteria for PJI. A total of 119 patients undergoing revision total hip (rTHA) or knee arthroplasty (rTKA) were included. Permanent histology sections of periprosthetic tissue were evaluated under high power (400× magnification) and neutrophils were counted per HPF. The mean neutrophil count in ten HPFs was calculated (PMN/HPF). Based on receiver operating characteristic (ROC) curve analysis and the z-test, thresholds were compared.Aims
Methods
Aims. This study aimed to explore the
Aims. This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. Methods. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry. Results. COMP protein levels were significantly elevated in serum and synovial fluid of knee OA patients, especially those in the advanced stages of the disease. Serum COMP was significantly correlated with radiological severity as well as measures of body composition, physical performance, knee pain, and disability. Receiver operating characteristic curve analysis unveiled a
Aims. The aim of this study was to identify the information topics that should be addressed according to the parents of children with developmental dysplasia of the hip (DDH) in the
Aims. Serum inflammatory parameters are widely used to aid in diagnosing a periprosthetic joint infection (PJI). Due to their limited performances in the literature, novel and more accurate biomarkers are needed. Serum albumin-to-globulin ratio (AGR) and serum CRP-to-albumin ratio (CAR) have previously been proposed as potential new parameters, but results were mixed. The aim of this study was to assess the
Aims. The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support. Methods. The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the
Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a
Aims. To investigate the optimal thresholds and
Aims. Current
Aims. Periprosthetic joint infection (PJI) demonstrates the most feared complication after total joint replacement (TJR). The current work analyzes the demographic, comorbidity, and complication profiles of all patients who had in-hospital treatment due to PJI. Furthermore, it aims to evaluate the in-hospital mortality of patients with PJI and analyze possible risk factors in terms of secondary diagnosis,
Aims. We aimed to evaluate the utility of . 68. Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with . 99m. Tc-methylene bisphosphonates (. 99m. Tc-MDP) bone scan. Methods. We studied 39 patients with suspected PJI or AL. These patients underwent . 68. Ga-citrate PET/CT, . 99m. Tc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. Results. Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the
Aims. The diagnosis of periprosthetic joint infection (PJI) has always been challenging. Recently, D-dimer has become a promising biomarker in diagnosing PJI. However, there is controversy regarding its
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include:
Aims. The sensitivity and specificity of electrodiagnostic parameters in diagnosing carpal tunnel syndrome (CTS) have been reported differently, and this study aims to address this gap. Methods. This case-control study was conducted on 57 cases with CTS and 58 controls without complaints, such as pain or paresthesia on the median nerve. The main assessed electrodiagnostic parameters were terminal latency index (TLI), residual latency (RL), median ulnar F-wave latency difference (FdifMU), and median sensory latency-ulnar motor latency difference (MSUMLD). Results. The mean age in cases and controls were 50.7 years (SD 9.9) and 47.9 years (SD 12.1), respectively. The CTS severity was mild in 20 patients (34.4%), moderate in 19 patients (32.8%), and severe in 19 patients (32.8%). The sensitivity and specificity of the electrodiagnostic parameters in diagnosing CTS were as follows: TLI 75.4% and 87.8%; RL 85.9% and 82.5%; FdifMU 87.9% and 82.9%; and MSUMLD 94.8% and 60.0%, respectively. Conclusion. Our findings indicated that electrodiagnostic parameters are significantly associated with the clinical manifestation of CTS, and are associated with high
Aims. The diagnosis of periprosthetic joint infection (PJI) can be challenging as the symptoms are similar to other conditions, and the markers used for diagnosis have limited sensitivity and specificity. Recent research has suggested using blood cell ratios, such as platelet-to-volume ratio (PVR) and platelet-to-lymphocyte ratio (PLR), to improve
Aims. This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative
Aims. This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization. Results. A total of 46 genes were obtained from the intersection of significantly upregulated genes in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional annotation analysis revealed that these genes were closely related to pathological responses associated with OA, such as inflammation and immunity. Four key dysregulated genes (cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-related protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after using machine-learning algorithms. These genes had high