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Aims
We aimed to develop and validate a novel prediction model for osteoporosis based on sero-
tonin, fat-soluble vitamins, and bone turnover markers to improve prediction accuracy of
osteoporosis.

Methods
Postmenopausal women aged 55 to 65 years were recruited and divided into three groups
based on DXA (normal, osteopenia, and osteoporosis). A total of 109 participants were included
in this study and split into healthy (39/109, 35.8%), osteopenia (35/109, 32.1%), and osteoporosis
groups (35/109, 32.1%). Serum concentrations of serotonin, fat-soluble vitamins, and bone
turnover markers of participants were measured. Stepwise discriminant analysis was performed
to identify efficient predictors for osteoporosis. The prediction model was developed based
on Bayes and Fisher’s discriminant functions, and validated via leave-one-out cross-validation.
Normal and empirical volume under the receiver operating characteristic (ROC) surface (VUS)
tests were used to evaluate predictive effects of variables in the prediction model.

Results
Significant variables including oestrogen (E2), total procollagen type 1 amino-terminal
propeptide (TP1NP), parathyroid hormone (PTH), BMI, vitamin K, serotonin, osteocalcin
(OSTEOC), vitamin A, and vitamin D3 were used for the development of the prediction model.
The training accuracy for normal, osteopenia, and osteoporosis is 74.4% (29/39), 80.0% (28/35),
and 85.7% (30/35), respectively, while the total training accuracy is 79.8% (87/109). The internal
validation showed excellent performance with 72.5% testing accuracy (72/109). Among these
variables, serotonin and vitamin K exert important roles in the prediction of osteoporosis.

Conclusion
We successfully developed and validated a novel prediction model for osteoporosis based on
serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers. In addition,
interactive communication between serotonin and fat-soluble vitamins was observed to be
critical for bone health in this study.
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Article focus
• A novel prediction model for osteoporosis was developed

in this study based on serotonin, fat-soluble vitamins, and
bone turnover markers.

Key messages
• We successfully developed and validated a novel prediction

model for osteoporosis based on serum concentrations of
serotonin, fat-soluble vitamins, and bone turnover markers,
with a total training accuracy of 79.8% (87/109).

• Serotonin and fat-soluble vitamins were demonstrated in
this study to interact with each other, with their combined
effects influencing bone health and contributing to the
development of postmenopausal osteoporosis.

Strengths and limitations
• Bayesian and Fisher’s discriminant analysis were performed

in this study to develop the prediction model for osteopo-
rosis, which provides novel approaches to develop predic-
tion models.

• A limitation of this study is that the prediction model was
only tested on the training cohort, without validation on an
independent validation cohort, which is required in future
studies to increase the prediction accuracy of this predic-
tion model.

Introduction
As a degenerative metabolic disease caused by imbalanced
skeletal remodelling, osteoporosis has become a global public
health problem. Osteoporosis is the main cause of fractures for
postmenopausal women.1 Early diagnosis and interventions in
high-risk populations are essential for delaying the devel-
opment of osteoporosis and thereby improving treatment
outcomes.2,3 However, the capability of early diagnosis is
limited due to the lack of sensitive biomarkers. Despite the
fact that measurement of bone mineral density (BMD) by
dual energy x-ray absorptiometry (DXA) is presently the most
recommended tool for osteoporosis risk monitoring, it was
restricted by the safety of repeated measurements and the
bone status of the detection sites.4 Therefore, it is important
to identify effective predictive biomarkers and develop a novel
prediction model for osteoporosis accordingly.

Serotonin is a common neurotransmitter present in the
central nervous system and intestine, which is also involved
in the regulation of bone remodelling. Serum concentrations
of serotonin are positively correlated with BMD of the lumbar
spine and femoral neck among postmenopausal women.5,6

Extremely low levels of E2 are common among postmeno-
pausal women, which is the leading risk factor for osteoporo-
sis.7 Serotonin is demonstrated to be the messenger of E2
that exerts its physiological and pathological effects.8 Naturally
occurring changes in E2 alter serotonin concentration via two
pathways: increasing the production of tryptophan hydrox-
ylase (rate-limiting enzyme for serotonin synthesis), and
inhibiting the expression of serotonin reuptake transporter
(SERT) thus promoting the action of serotonin.9,10 Serotonin is
also regarded as a positive regulator of bone mass through the
serotonin receptors expressed by osteoblasts.11-13 Meanwhile,
serotonin is also strongly implicated in the regulation of

the mammalian circadian clock, which is essential for the
maintenance of bone health.14,15

Additionally, E2 also regulates the metabolism of
fat-soluble vitamins.16,17 Postmenopausal women have shown
abnormal levels of fat-soluble vitamins, while the consump-
tion of these vitamins as supplements has been confirmed
to reduce bone loss caused by E2-deficient osteoporosis.18-21

Meanwhile, fat-soluble vitamins interact with serotonin, which
is involved in bone metabolism as mentioned above. Vitamin
D activates the transcription of the serotonin-synthesizing
gene tryptophan hydroxylase 2 (TPH2) through vitamin D
response element (VDRE), and inhibits the transcription
of TPH1 in tissues outside the blood-brain barrier.22 Vita-
min K is capable of stimulating platelet transportation of
serotonin.23 Additionally, supplement of vitamins A, K, and
E alters serotonin levels among different populations.24-26

Therefore, the interactive communication between serotonin
and fat-soluble vitamins appears to be critical for the onset
and progression of osteoporosis, providing novel potential for
the prediction of osteoporosis.

Numerous prediction models for osteoporosis or
related fractures have been developed.27,28 Among these
models, the Fracture Risk Assessment Tool (FRAX), which
contains seven dichotomous clinical risk factors, has been
applied as a standard to evaluate the individualized ten-year
probability of osteoporotic fractures since its development
in 2008.29 However, as no quantitative index is included in
the FRAX tool, it is only used to predict the probability of
osteoporotic fractures instead of the risk of osteoporosis,
let alone the prediction of early phase of osteoporosis.30

The International Osteoporosis Foundation’s (IOF) One-Minute
Osteoporosis Risk Test is also commonly used for screen-
ing osteoporosis, yet a high false positive rate has been
observed.31,32 Other common prediction models of osteoporo-
sis, such as the Osteoporosis Self-Assessment Tool for Asians
(OSTA)33 and the Beijing Friendship Hospital Osteoporosis
Self-Assessment Tool (BFH-OST),34 are mainly based on indirect
indicators including age, height, BMI, and menopausal time.
Due to the lack of direct indicators reflecting bone status, the
accuracy of osteoporosis prediction is relatively low.

As serotonin and fat-soluble vitamins are critically
involved in bone metabolism, we intended to elucidate
their relationship with the development of osteoporosis and
developed a prediction model based on serum levels of
fat-soluble vitamins and serotonin. In addition, serum levels
of bone turnover markers including β-cross-linked C-telopep-
tide of type 1 collagen (CROSSL), oestrogen (E2), osteocalcin
(OSTEOC), parathyroid hormone (PTH), and total procolla-
gen type 1 amino-terminal propeptide (TP1NP), which were
frequently used to evaluate bone metabolism, have also been
included in our prediction model to improve accuracy.35,36

This study is a forerunner to establish a prediction model
for osteoporosis based on the status of fat-soluble vitamins
and serotonin among postmenopausal women, which we
hope will provide novel potential for the prediction and early
diagnosis of osteoporosis.

Methods
Study design, patient recruitment, and data collection
This study was approved by the Ethics Committee of
the First Hospital of China Medical University ([2020]-248).
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Postmenopausal women aged 55 to 65 years were recruited
from the community through open advertisements, which
included social media, posters, electronic billboards, and
word of mouth, from 1 March to 30 September 2021. The
research team of orthopaedists were responsible for recruit-
ing the participants. All authors had full responsibility for
data collection, analysis, interpretation, and writing of the
report. Potential participants were screened for eligibility and
excluded if they had any of the following: 1) shift workers;37

2) lower limb joint injury or surgery; 3) cognitive impairment;
4) uncontrolled cardiovascular disease; 5) malignant tumours;
6) receiving x-ray or radiation therapy; and 7) other medical
and medication history known to influence BMD and serum
concentrations of fat-soluble vitamins in this study (Supple-
mentary Table i). All participants were fully informed of the
procedure and potential risks associated with this study by
the research team members (JW, HL), and signed informed
consent. Once recruited into the study, all participants were
allowed to come to the orthopaedic ward for blood collec-
tion on any morning from Monday to Friday, while related
imaging examination was carried out in the physical exami-
nation centre on the same weekdays. The requirements and
procedures for blood collection and imaging examinations are
detailed in the following sections. A flow diagram of study
recruitment is provided in Figure 1.

Patient demographic and clinical characteristics
Postmenopausal osteoporosis (PMOP) is the main type of
primary osteoporosis. Therefore, postmenopausal women
aged 55 to 65 years were included in this study to develop
the prediction model for PMOP. Of note, postmenopausal
women aged over 65 years were not included in this study
because female osteoporosis patients aged over 65 years or
male patients aged over 70 years are generally considered to
have senile osteoporosis (SOP).38 Among 180 samples included
in the entire dataset, 36 were excluded due to missing data.
In addition, six participants were excluded due to long-term
night-shift work, five were excluded due to recent surgery
history, eight were excluded due to use of glucocorticoids, 14
were excluded due to use of anti-osteoporosis medications,
and two were excluded due to use of hypolipidaemic agents.
The total recruitment process and results are shown in Figure
1. All participants were examined in this study by DXA and
were divided into three groups based on T value: healthy
(39/109, 35.8%), osteopenia (35/109, 32.1%), and osteoporosis
(35/109, 32.1%). Characteristics of the model development
cohort are summarized in Table I, Figure 2, and Supplemen-
tary Figure a. There were no significant differences in age and
sex among different groups. Significant differences including
serotonin, vitamin A, vitamin K, vitamin D3, weight, BMI, E2,
PTH, and TP1NP were observed among subgroups. None
of the other clinical parameters were statistically significant
(Table I). Of note, 2.7% (101/109) and 55.9% (60/109) of
all participantshad vitamin D insufficiency and deficiency. It
is noted that there is a linear association between serum
concentrations of vitamin K1 and triglyceride, indicating that
vitamin K1 population reference intervals should be expressed
as a ratio of the triglyceride concentration.39 In order to
determine whether the vitamin K results in this study were
influenced by serum triglyceride concentrations, we examined
the lipid levels of the participants included in this study. As

shown in Table I, mean serum concentrations of triglyceride
among participants in different groups were 0.98 (SD 0.11),
0.96 (SD 0.14), and 0.96 mmol/L (SD 0.12), which exhibited no
statistical difference (Table I). Therefore, the serum concentra-
tions of vitamin K1 could be further used to establish the
prediction model in this study.

Bone measures and clinical assessments
BMD of the left femoral neck and lumbar spine (L1-L4) were
measured by DXA. The mean value of Chinese healthy women
was used to calculate the T-score. According to WHO criteria,
osteoporosis is considered when BMD is 2.5 SDs below the
young mean value (T < -2.5), while osteopenia is considered
when -2.5 < T < -1.0.

Serum fat-soluble vitamins, serotonin, and bone turnover
marker levels
Blood was collected by venipuncture at 7:00 am in the fasting
state (≥ 10 hrs). Serum was collected and aliquoted for storage
at -80°C until use. For the measurement of serum fat-soluble
vitamins and serotonin levels, serum samples were analyzed
using liquid chromatography–tandem mass spectrometry
(LC-MS/MS, SCIEX 6500 QTRAP; SCIEX, USA). The fat-soluble
vitamins assay kit for the high-performance liquid chromatog-
raphy-tandem mass spectrometry (HPLC-MS/MS) (License No.
LXZZ 20202400103; Shandong Yingsheng Biotechnology Co.,
China) that we used was approved by the National Medical
Products Administration, which can be used to accurately
quantify vitamin A, vitamin E, 25-OHD2, 25-OHD3, and vitamin
K in human serum. This method has also been used for routine
clinical specimen testing. Notably, among these fat-soluble
vitamins, vitamin K is a class of menaquinone derivatives,
and we detected K1 (phylloquinone) in our research, which is
light-sensitive. Therefore, the centrifugation and separation of
serum were completed within two hours after blood collec-
tion, which was then treated with protective agent (containing
citric acid, β-mercaptoethanol aqueous solution) and stored
at -80°C. Serum concentrations of bone turnover markers
were measured via chemiluminescence. Standard curves were
generated according to the manufacturer’s instructions, and
the corresponding concentrations were calculated.

Development and validation of the prediction model
Model development and validation was performed according
to transparent reporting for individual prognosis or diagnosis
(TRIPOD) guidance of multivariable prediction models.40 Raw
data obtained from 145 participants, including age, height,
weight, BMI, serum levels of fat-soluble vitamins (VA, VD2,
VD3, VE, and VK), bone turnover markers (CROSSL, E2, OSTEOC,
PTH, and TP1NP), and serotonin, were filtered first via stepwise
discriminant analysis (SDA) to identify efficient predictors
for osteoporosis. Selected variables were then used for the
development and validation of the prediction model. Cases
with missing data were removed from the model in this study.

Development of the prediction model was based on
Bayes and Fisher’s discriminant functions through SDA. With
the original complete data of individual cases without missing
values and the prior probability of each group being one-third,
Bayesian and Fisher’s discriminant functions were generated
through SDA to determine the cluster centroids and individ-
ual classifications. Briefly outlining the modelling approach,

Development and validation of a novel prediction model for osteoporosis
J. Wang, L. Shan, J. Hang, et al

113



three discriminant equations for osteoporosis, osteopenia, and
normal bone mass were obtained through Bayes discriminant
analysis. Substituting the variable values of each individual
into the three discriminant equations, the classification with
the largest function value is the classification to which
the individual belongs. Meanwhile, three cluster centroids
of osteoporosis, osteopenia, and normal bone mass and
two discriminating equations were determined by Fisher’s
discriminant analysis. Substituting the variable values of each
individual into the two discriminant equations and calculat-
ing the distance from the cluster centroids, the classification
of the individual is also obtained according to the distance.
Validation of the prediction model was performed by leave-
one-out cross-validation (LOOCV). All data were analyzed
using SPSS v. 24.0 (IBM, USA).

Assessment of prediction model
Receiver operating characteristic (ROC) analysis is normally
used to assess the training and test accuracy of diagnos-
tic markers and classification procedures in general. The
ROC surface was considered to be the generalization of
the ROC curve, and the summarizing index of the volume
under the ROC surface (VUS) was normally used to evalu-
ate the diagnostic accuracy of biomarkers in a three‐class
classification model.41,42 The trinROC R package43 was used for

the VUS test in this study to assess the discriminatory power of
the prediction model.

Statistical analysis
In this study, efficient predictors for osteoporosis were filtered
via SDA. Development of the prediction model was per-
formed according to Bayes and Fisher’s discriminant func-
tions, while validation of the prediction model was performed
via leave-one-out cross-validation (LOOCV). The one-sample
Kolmogorov-Smirnov test was used to assess the normality
of data before performing statistical tests. Spearman’s rank
correlation was applied to test for correlations. One-way
analysis of variance (one-way ANOVA) was used to calculate
p-values displayed in the baseline characteristics of partici-
pants, stepwise optimization, and three-class trinROC analyses.
F-test was performed to calculate exact F-values in the
stepwise optimization of the prediction model. Z-statistic was
used to determine the statistical significance level of three-
class trinROC analyses. All data were analyzed using SPSS
version 24.0 (IBM, USA).

Results
Stepwise optimization of the prediction model
SDA was performed to identify effective predictors for
osteoporosis. The probability of F was used as the criterion for

Fig. 1
Flow diagram of participant recruitment and data analysis. A total of 180 participants were recruited, with 71 excluded due to missing data and
exclusion criteria. Participants included in this study were divided into three groups according to bone mineral density (BMD). Serum was collected
for the measurement of serotonin, fat-soluble vitamins, and bone turnover markers. Methods for model development and validation are displayed in
the following step. DXA, dual energy x-ray absorptiometry.
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entering and removing variables; a variable was entered into
the model if the significance level of its F-value was < 0.10, and
was removed if it was > 0.20. Significant variables including E2,
TP1NP, PTH, BMI, vitamin K, serotonin, OSTEOC, vitamin A, and
vitamin D3, sequenced according to statistical values, were
used for further development of the prediction model (Table
II). Detailed steps for the SDA are available in Supplementary

Table ii. However, vitamin E was excluded by SDA. In order to
further understand the status of fat-soluble vitamins among
postmenopausal women and their association with osteopo-
rosis progression, vitamin E was included artificially.

Table I. Baseline characteristics of participants. All data are shown as mean (SD).

Characteristic Normal bone mass N Osteopenia N Osteoporosis N
p-
value*

Serotonin (pg/ml) 154.85 (68.84) 39 124.45 (58.87) 35 121.26 (59.43) 35 0.042

Vitamin A (ng/ml) 458.53 (131.51) 39 495.16 (138.77) 35 485.3 (150.88) 35 0.507

Vitamin E (μg/ml) 17.22 (6.61) 39 15.2 (6.94) 35 14.39 (4.36) 35 0.122

Vitamin K (ng/ml) 0.48 (0.52) 39 0.27 (0.22) 35 0.24 (0.18) 35 0.006

Vitamin D3 (ng/ml) 21.48 (7.52) 39 19.88 (8.85) 35 16.66 (7.28) 35 0.033

Vitamin D2 (ng/ml) 2.25 (1.6) 39 2.5 (3.18) 35 1.65 (1.02) 35 0.226

Age (yrs) 60.18 (6.87) 39 60.26 (7.83) 35 61.86 (5.74) 35 0.509

Height (cm) 161.08 (4.23) 39 160.43 (5.24) 35 158.74 (4.83) 35 0.103

Weight (kg) 66.93 (8.82) 39 63.2 (7.64) 35 58.29 (8.26) 35 < 0.001

BMI (kg/m2) 25.8 (3.29) 39 24.59 (3.07) 35 23.09 (2.84) 35 0.001

CROSSL (ng/ml) 525.71 (259.31) 39 695.02 (301.58) 35 590.76 (284.29) 35 0.038

E2 (ng/ml) 59.1 (30.02) 39 69.51 (32.62) 35 31.5 (15.89) 35 < 0.001

OSTEOC (ng/ml) 23.12 (9.74) 39 22.58 (6.65) 35 19.32 (7.63) 35 0.108

PTH (ng/ml) 40.69 (16.48) 39 29.84 (9.5) 35 42.24 (19.7) 35 0.002

TP1NP (ng/ml) 58.63 (22.74) 39 73.21 (20.33) 35 48.36 (25.97) 35 < 0.001

*One-way analysis of variance.
CROSSL, β-cross-linked C-telopeptide of type 1 collagen; OSTEOC, osteocalcin; PTH, parathyroid hormone; TP1NP, total procollagen type 1 amino-terminal
propeptide.

Fig. 2
Distribution of serotonin and fat-soluble vitamins among the three groups. Red indicates osteoporosis, blue indicates osteopenia, and green
indicates normal bone mass. a) to e) Histograms of serotonin and fat-soluble vitamins (vitamin A, vitamin D3, vitamin E, and vitamin K). f ) to j) Box
plots of serotonin and fat-soluble vitamins (vitamin A, vitamin D3, vitamin E, and vitamin K).
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Development and validation of the prediction model
Bayes discriminant function and Fisher’s discrimination
function were generated simultaneously to develop the
prediction model for osteoporosis based on the ten variables
mentioned above.

The Bayes discriminant functions are expressed as
below (Y1, Y2, and Y3 refer to normal bone mass, osteopenia,
and osteoporosis, respectively):

Y1=0.044*seroto-
nin+0.004*VA+0.242*VE+2.583*VK+0.217*VD3

+2.560*BMI+0.020*E2+0.154*OSTEOC+0.120*PTH+0.10
6*TP1NP-51.441

Y2=0.034*seroto-
nin+0.012*VA+0.196*VE+0.728*VK+0.156*VD3+2.366*BMI+0.0
53*E+0.052*OSTEOC+0.088*PTH+0.152*TP1NP-47.653

Y3=0.033*seroto-
nin+0.012*VA+0.183*VE+0.795*VK+0.077*VD3+2.291*BMI-0.00
4*E+0.120*OSTEOC+0.135*PTH+0.086*TP1NP-40.537

The Fisher’s discrimination functions are expressed as
below:

Y1=0.002*seroto-
nin+0.001*VA+0.14*VE+2.45*VK+0.050*VD3+0.068*BMI+0.025
*E2-0.020*OSTEOC-0.020*PTH+0.027*TP1NP-4.374

Y2=0.007*seroto-
nin+0.005*VA+0.034*VE+1.271*VK+0.057*VD3+0.148*BMI-0.01
2*E2+0.058*OSTEOC-0.014*PTH-0.020*TP1NP-4.083

Centroids of the three clusters are obtained based on
Fisher’s discrimination functions. The open circle indicates the
participants, while squares in green, blue, and red represent
centroids in the corresponding group (Figures 3a to 3c).
The overall distribution is shown in Figure 3d, with open
circles representing the normal bone mass group, squares
representing the osteopenia group, and crosses representing
the osteoporosis group. The distribution showed that the

prediction model could clearly separate the participants into
three clusters, indicating the good discriminatory ability of
this prediction model (Figure 3d). Based on the above Bayes
and Fisher’s discrimination functions, we could calculate the
training accuracy of the prediction model for osteoporosis. As
shown in Table III, the training accuracy for the model is 79.8%
(87/109). Meanwhile, the internal validation showed excellent
performance with 72.5% test accuracy (72/109). Predictive
results of the discriminant analysis of 108 cases are shown
in Supplementary Table iii. The field diagram of prediction
model based on Fisher’s discrimination function is also shown
in Supplementary Figure b. In the field diagram, the lines
composed of the numbers 1, 2, and 3 divide the diagram into
three parts, with areas composed of two “1/2/3” lines and a
border representing the normal bone mass, osteopenia, and
osteoporosis groups, respectively (Supplementary Figure b).

In addition, we also randomly divided the cohort into
two separate groups in a ratio of approximately 2:1 in order to
assess prediction ability of the prediction model in a separate
test cohort. The training cohort consisted of 71 samples, while
the validation cohort comprised 38 samples. The development
and validation of the new prediction model were therefore
based on two independent cohorts. The prediction accuracy
of the new model was 74.6%, while the validation accuracy
calculated by LOOCV in the training cohort was 66.2%. The
external predictive accuracy of the model in the validation
cohort was 57.9% (Supplementary Table iv). We also randomly
divided the cohort into two separate groups in a ratio of
approximately 4:1, with 88 in the training cohort and 21 in
the validation cohort. The prediction accuracy of the new
model was 70.5%, while the validation accuracy calculated
by LOOCV in the training cohort was 62.5%. The external
predictive accuracy of the model in the validation cohort was
66.7% (Supplementary Table iv). It can be seen that although

Table II. Wilks’ lambda and significance test of stepwise input variables.*,†

Step Input

Wilks’ lambda

Statistical value Freedom 1 Freedom 2 Freedom 3

Exact F-values

Statistical value Freedom 1 Freedom 2 p-value

1 E2 0.744 1 2 106.000 18.202 2 106.000 < 0.001

2 TP1NP 0.631 2 2 106.000 13.608 4 210.000 < 0.001

3 PTH 0.579 3 2 106.000 10.907 6 208.000 < 0.001

4 BMI 0.535 4 2 106.000 9.442 8 206.000 < 0.001

5 Vitamin K 0.504 5 2 106.000 8.330 10 204.000 < 0.001

6 Serotonin 0.476 6 2 106.000 7.577 12 202.000 < 0.001

7 OSTEOC 0.452 7 2 106.000 6.956 14 210.000 < 0.001

8 Vitamin A 0.429 8 2 106.000 6.525 16 198.000 < 0.001

9 Vitamin D3 0.392 9 2 106.000 6.505 18 196.000 < 0.001

At each step, the variables that minimize the overall Wilks’ lambda are entered in a stepwise fashion.
Statistical test: F-value and F-test. F-values refer to statistical value in column G, with freedom 1 and freedom 2 (columns H and I). F-test was performed to
calculate exact F-values (columns G to J).
*The largest significance level of F-value to enter into the model is 0.10.
†The minimal significance level of F-value to be removed from the model is 0.20.
E2, oestrogen; OSTEOC, osteocalcin; PTH, parathyroid hormone; TP1NP, total procollagen type 1 amino-terminal propeptide.
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dividing the samples into independent training and valida-
tion cohorts allowed us to externally validate the model, the
reduction in sample size led to a small decrease in prediction
and validation accuracy. Therefore, sufficient samples may
increase the accuracy and stability of the models.

Assessment of predictive effects of serotonin and fat-soluble
vitamins
We first focused on the role of serotonin and fat-soluble
vitamins in the prediction of osteoporosis. The variables were
sorted according to Wilks’ lambda, which emphasized the
sequence of variables to improve the accuracy of the whole
model while retaining other variables such as BMI and TP1NP
(Supplementary Table ii). The rank order in this principle
was vitamin K > serotonin > vitamin A > vitamin D3. We
also adopted Bayes discriminant analysis for each variable
including serotonin, vitamin K, vitamin A, and Vitamin D3
to determine their prediction ability. The order of training
accuracy was: serotonin (44.4%) > vitamin K (42.8%) > vitamin
D3 (37.2%) > vitamin A (32.4%) (Supplementary Table v). In
addition, VUS test was applied in this study to measure and

estimate the test accuracy for the prediction model with three
ordinal predictive groups. The order of the variables based
on normal VUS was vitamin K > serotonin > vitamin D3>
vitamin A when variables were assumed to follow normal
distribution, while the order based on empirical VUS was
vitamin D3> serotonin > vitamin K > vitamin A (Table IV, Figure
4). Three-class trinROC analyses of other variables (BMI, E2,
OSTEOC, PTH, and TP1NP) are displayed in Supplementary
Figure c.

Analysis of co-activity between parameters
Although the prediction model in this study exhibited good
training accuracy, the prediction model based on univariate
analysis exhibited poor training accuracy with the training
accuracy of only three variables over one-third (serotonin,
vitamin K, and vitamin D3). This finding indicates that there
might be interactions among these variables, which play
important roles in the early prediction of osteoporosis. In
order to account for co-activity between parameters, we
first conducted a normality test on the variables and found
that none of them conformed to a normal distribution.

Fig. 3
Cluster centroids of three groups based on Fisher’s discrimination function. Functions 1 and 2 were obtained based on Fisher’s discrimination
functions. Abscissa and ordinate were obtained by substituting the variables into equations. a) to c) Centroids of three groups. Open circles represent
individuals in each group. Centroids of three groups (normal bone mass, osteopenia, and osteoporosis) are indicated in coloured squares (green,
blue, and red, respectively). d) All individuals are indicated as open circles, squares, and crosses, representing normal bone mass, osteopenia, and
osteoporosis, respectively. Centroids of three groups are coloured in green, blue, and red.
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Therefore, we used Spearman’s rank correlation to verify
the correlation between the variables. The results showed
that the coefficient of rank correlation between vitamin A
and vitamin D3 was 0.465 (p < 0.001), while the coefficient
of rank correlation between vitamin E and vitamin K was
0.481 (p < 0.001), demonstrating that there were moderate
correlations in vitamin A-vitamin D3 and vitamin E-vitamin K.
Related contents were added in the manuscript (Supplemen-
tary Tables vi and vii).

Discussion
Main findings
In the present study, we established a novel prediction
model based on serotonin, fat-soluble vitamins, and bone
turnover markers according to Bayes discrimination analysis
and Fisher’s discrimination analysis. The prediction model
performed well with a total training accuracy of 79.8%
(87/109) and LOOCV of 72.5% (72/109). We observed that low
BMD was associated with low serum concentrations of vitamin
K, serotonin, and vitamin D3, as well as high levels of vitamin
A. No significant difference was found for vitamin E. Of all

Table III. Aggregated results of discriminant analysis.*,†

Data type Display format Classification

Predicted results

TotalNormal bone mass Osteopenia Osteoporosis

Original data

Count

Normal bone mass 29 5 5 39

Osteopenia 5 28 2 35

Osteoporosis 1 4 30 35

%

Normal bone mass 74.4 12.8 12.8 100.0

Osteopenia 14.3 80.0 5.7 100.0

Osteoporosis 2.9 11.4 85.7 100.0

Cross-validation

Count

Normal bone mass 23 9 7 39

Osteopenia 6 26 3 35

Osteoporosis 1 4 30 35

%

Normal bone mass 59.0 23.1 17.9 100.0

Osteopenia 17.1 74.3 8.6 100.0

Osteoporosis 2.9 11.4 85.7 100.0

*79.8% (87/109) of original cases were correctly classified.
†72.5% (72/109) of cross-validation cases were correctly classified.

Fig. 4
Three-class trinROC analyses of serotonin and fat-soluble vitamins. Three-class trinROC analyses were used to evaluate diagnostic accuracy of
biomarkers in this model. Volume under surface of each variable represents corresponding prediction accuracy. a) to e) Normal-VUS tests of
serotonin, vitamin A, vitamin D3, vitamin E, and vitamin K. f ) to j) Empirical-VUS tests of serotonin, vitamin A, vitamin D3, vitamin E, and vitamin K.
ROC, receiver operating characteristic; VUS, volume under the ROC surface.
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these metrics, serotonin and vitamin K are the most signifi-
cant predictors. Surprisingly, however, vitamin D3 achieved

Table IV. Three-class trinROC analyses of the variables.

Variable
Normal
VUS p-value Order

Empirical
VUS p-value Order

Serotonin 0.252 0.05315 5 0.260 0.05028 5

Vitamin A 0.196 0.45334 9 0.203 0.40344 8

Vitamin E 0.212 0.24705 7 0.183 0.67132 9

Vitamin K 0.282 0.01158 2 0.307 0.0088 3

Vitamin
D3 0.243 0.07129 6 0.275 0.02823 4

BMI 0.310 0.00258 1 0.320 0.0051 2

E2 0.280 0.01432 3 0.331 0.00549 1

OSTEOC 0.265 0.03643 4 0.257 0.06625 6

PTH 0.179 0.76394 10 0.178 0.79323 10

TP1NP 0.197 0.44933 8 0.205 0.4088 7

Statistical test: If a single classifier is investigated, the null hypothesis is V

US1 = 1/6 with the Z-statistic: Z = VUS1 − 1/6Var(VUS1)
E2, oestrogen; OSTEOC, osteocalcin; PTH, parathyroid hormone; ROC,
receiver operating characteristic; TP1NP, total procollagen type 1
amino-terminal propeptide; VUS, volume under the ROC surface.

poor prediction effects. Notably, the prediction model based
on univariate analysis exhibited poor training accuracy, and
only three variables achieved training accuracy over one-third.
Therefore, the interaction among these variables, rather than
a single variable alone, plays an important role in the early
prediction of osteoporosis, which could be explained by the
variables’ molecular mechanisms (Figure 5).

Bayesian and Fisher’s discriminant rules are used to
develop the prediction model for osteoporosis. Bayesian and
Fisher’s discriminant analyses are two statistical analyses for
modelling that are essentially the same, yielding identical
predictive accuracy and validation accuracy. However, their
presentation format varies, catering to different users’ needs
for model use. Bayes discriminant function could clearly obtain
the predictive probabilities of which disease status the patient
has, which is more suitable for presentation to patients, while
Fisher’s discriminant function visually shows the degree of
clustering of different groups through class centroids, with
larger distances between class centroids indicating better
differentiation between each population to some extent,
which is more suitable for professionals to evaluate predic-
tive models and the effectiveness of differentiating patient
subtypes in clinical settings. Therefore, the two discriminant
methods are essentially the same, which can be selected
based on the users and purposes of the model.

Interpretations
Serotonin is a neurotransmitter present in the central nervous
system and intestine. Both centrally and peripherally produced
serotonin was demonstrated to affect bone status.44 The

Fig. 5
Effects of serotonin and fat-soluble vitamins on the pathogenesis of osteoporosis. Interactive communication between serotonin and fat-soluble
vitamins (vitamin A, vitamin D3, vitamin E, and vitamin K) is critical for bone health. Red arrows represent interactions between serotonin and
fat-soluble vitamins. Serotonin, vitamin K, and vitamin D3 exert the major function to regulate bone metabolism. Serotonin modulates bone status
through circadian rhythm and mediating oestrogen actions. Vitamin K is involved in bone remodelling via three pathways: anti-ferroptosis effects,
nuclear factor kappa B (NF-κB) pathway, and participating carboxylation of vitamin K-dependent proteins (VKDPs). Vitamin D3 could regulate calcium
and phosphorus metabolism to affect bone health. Vitamin A and vitamin E have indirect roles in bone remodelling via regulating the effects of
serotonin, vitamin D3, or vitamin K. GGCX, gamma-glutamyl carboxylase; RXR, retinoid X receptor; SERT, serotonin reuptake transporter.
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relationship between peripheral serotonin and bone remains
controversial. Many studies have shown that serum seroto-
nin concentrations are lower among postmenopausal women
and positively associated with BMD, indicating its positive
effects on bone metabolism.45–47 However, other studies have
demonstrated that serotonin levels are inversely associated
with BMD,11,44,48,49 and in vitro experiments also show conflict-
ing results.50–52 Several explanations would probably account
for this paradoxical effect: serum serotonin level, which is
largely affected by tryptophan intake, may obviously differ
between the populations, or different sampling times in
distinct studies could impact its accuracy as serum seroto-
nin concentration exhibits a 12-hour circadian rhythm and
seasonal variation.53,54 Additionally, it was further explained
that the association between serum serotonin and non-verte-
bral fracture risk seems to be U-shaped, with higher fracture
risk at low and high serum levels than at median levels.55

Vitamin K is involved in blood coagulation and bone
metabolism. Similar to our study, numerous studies have
indicated that low serum levels of vitamin K are associ-
ated with low BMD and an increased risk for osteopor-
otic fractures.56–59 Indeed, vitamin K mainly participates in
bone metabolism as a cofactor of gamma-glutamyl carbox-
ylase (GGCX), which catalyzes the carboxylation of vitamin
K-dependent proteins (VKDPs).60–62 In addition, vitamin K
regulates the proliferation and differentiation of osteoblasts
and osteoclasts through the signal transduction pathway of
nuclear factor kappa B (NF-κB), which is crucial for osteoclast
development and resorption.63 It is also noted that vitamin K
is a potent anti-ferroptotic compound that could protect cells
against ferroptosis.64 Targeting ferroptosis has been confirmed
in many studies to alleviate and prevent osteoporosis.65,66

Consequently, vitamin K might be a novel biomarker for the
prediction of osteoporosis.

Another fat-soluble vitamin, vitamin D, is responsible
for calcium and phosphorus homeostasis. Vitamin D insuffi-
ciency and deficiency were defined as serum 25-hydroxyvi-
tamin D3 values < 30 ng/ml and 20 ng/ml, respectively.67

Consistent with our study, increased vitamin D concentration
has also been demonstrated to be related to high BMD,
while low levels of vitamin D3 might increase the risk of
fractures.68–70 However, it is worth noting that serum concen-
trations of vitamin D are not associated with the risk of
fractures.71 It was also observed among healthy populations
that a supplement of vitamin D3 does not provide demon-
strable health benefits.72 These findings indicate that the
relationship between vitamin D3 and bone health is not a
simple direct linear relationship based on concentrations, but
rather it functions in conjunction with other indicators (such as
other types of fat-soluble vitamins). In addition, no significant
differences were observed in serum concentrations of vitamin
A and vitamin E among the three subgroups. The relation-
ships between serum concentrations of vitamin A, vitamin E,
and BMD among different populations remain controversial.
Elevated serum concentration of vitamin A is associated with
an increased risk of low BMD,73 while in a large, nationally
representative sample in the USA population, no significant
associations are observed between fasting serum retinyl esters
and any measure of bone mineral status.74 A similar situation
also occurs for vitamin E.75–77

It is interesting to note that serotonin and fat-soluble
vitamins could interact with and regulate each other. Among
fat-soluble vitamins, vitamin A and vitamin D share a common
nuclear receptor: retinoid X receptor. Therefore, high levels
of vitamin A could reduce vitamin D function.78 Vitamin E
could interfere with the activity of vitamin K, which might
be explained by the same metabolic pathways. Vitamin E
may strengthen the xenobiotic pathways of vitamin K and
accelerate the excretion of all vitamin K forms.79 In addition,
the status of optimal fat-soluble vitamins may contribute
to maintaining serotonin concentrations. Daily rhythms and
supplement of vitamin D could also regulate the production
of serotonin via regulating the expression of TPH1, TPH2,
and SERT.80,81 Serum serotonin level is reported to be directly
regulated by vitamin A supplements, which is also regulated
by SERT expression,24 and supplement of vitamin E could result
in obvious upregulation of serotonin level in rats.25 Moreover,
serum concentration of serotonin is observed to be decreased
among osteotomy rats when supplemented with vitamin K.26

As a result, the evaluation of only a single or several fat-solu-
ble vitamins is not enough to reflect their exact effects on
bone metabolism, while their net interactions might play a
determining role.

Strengths and limitations
This study has several strengths. As discussed above, recent
studies about the relationship between fat-soluble vitamins
and bone metabolism have yielded different, even contradic-
tory conclusions.70,71 It is not enough to evaluate the effect
of single fat-soluble vitamins due to their tight interactions.
Therefore, serum concentrations of all fat-soluble vitamins
were measured in this study, and VA, VD3, VE, and VK were
selected for the prediction model of osteoporosis. According
to these results, it is efficient to evaluate the global status
of fat-soluble vitamins and serotonin. In addition, all blood
samples were collected at around 7:00 am when the plasma
concentration of serotonin reaches its peak to minimize
the effects of serotonin rhythms, and uniform detection by
LC-MS/MS was applied to rule out the errors caused by
different detection methods.82 All these strengths guarantee
the reliability of our data. However, this study might also be
limited due to the insufficient sample size and single-centre
participants’ recruitment. Thus, LOOCV was performed in this
study for estimating the predictive accuracy.

Implications
We successfully developed and validated a clinical model to
predict the risk of osteoporosis based on several biomark-
ers, including serum concentrations of serotonin, fat-soluble
vitamins, and bone turnover markers. As precision medicine
is currently being emphasized,83,84 application of a clinical
prediction model and risk calculator can be a useful tool for an
individualized approach. Our studies provide a novel potential
for the early prediction that serum levels of fat-soluble
vitamins and serotonin could reflect bone status. In addition,
due to the various advantages of prediction models for various
diseases, such as facilitating early diagnosis and prevention of
diseases, and personalized healthcare, various kinds of disease
prediction models have been constructed.85–87 We proposed
a novel method to develop the prediction model based on
Bayes and Fisher’s discriminant analyses. Meanwhile, machine
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learning has also frequently been used to construct various
prediction models.88,89 Therefore, apart from the application
presented in this study, we could also calculate the critical
values for different indicators within different subgroups and
assign values to variable within different ranges based on their
coefficients in the Bayes and Fisher functions. That is to say,
we could categorize the probabilities of the three classifica-
tions not as precise numerical values, but within probability
intervals, which means that the probability of being classified
as Category A falls within a certain range, followed by the
probability of Category B within the next range, and then the
probability of Category C in the subsequent range. Stacking
is an ensemble learning technique that combines multiple
different models to enhance prediction accuracy. In stacking,
each model makes predictions independently, and then these
predictions are used as inputs and passed onto another
model, typically referred to as the meta-model or secon-
dary learner, which makes the final prediction. Subsequently,
using computational methods (such as artificial intelligence or
machine learning) to combine different models, together with
the idea of stacking, provides a means of updating the existing
prediction models.

In summary, a clinical prediction model to predict
the risk of osteoporosis was developed in this study based
on serum concentrations of serotonin, fat-soluble vitamins,
and bone turnover markers. The prediction model showed
excellent performance with 79.8% (87/109) training accuracy.
Serotonin and fat-soluble vitamins interact and regulate each
other, while the combined effects impact bone status and
contribute to the pathogenesis of osteoporosis. We developed
a novel prediction method for osteoporosis in this study,
which provides new avenues of investigation for the debates
about the effects of serotonin and fat-soluble vitamins on
bone status.

Supplementary material
Figures showing distribution of other variables (BMI, E2, OSTEOC,
PTH, and TP1NP) among the three groups (osteoporosis, osteopenia,
and normal bone mass), field diagram of the prediction model
based on Fisher's discrimination function, and three-class trinROC
analyses of other variables. Tables showing: inclusion and exclusion
criteria; stepwise tolerance, F significance, and Wilks’ lambda
of variables; predictive results of discriminant analysis of 108
cases; performance of various prediction models with different
classification principles; Bayes discriminant analysis for serotonin,
vitamin K, vitamin D3, and vitamin A; and normality test
and correlation test among serotonin and fat-soluble vitamins,
using one-sample Kolmogorov-Smirnov test and Spearman’s rank
correlation.
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