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 SUPPLEMENTARY MATERIAL
APPENDIX 1: Mathematical background of Kaplan-
Meier estimator and competing risk analysis. Classical
survival techniques. In classical survival analysis, the sur-
vival time (T) denotes the time from a well-defined time
origin to the occurrence of an event of interest. The obser-
vation window during which data are collected causes
individuals to have part of their disease history unob-
served. If the endpoint of interest has not yet occurred at
the end of the observation window, we said that the
event time was censored. Each individual (i) is assumed to
have an event time (ti) and a censoring time (ci). We
observe the minimum between these two times. The
basic assumption of the standard models for censored
data is that the censoring distribution and the event time
distribution are independent. This implies that at each
point in time, the individuals who are censored can be
represented by those who remain under observation.

The number at risk (subjects that are in follow-up and
have not experienced their event at time t) and the num-
ber of observed events at time tj are denoted by nj and dj,
respectively. A crucial quantity is the hazard λ, defined as
the conditional probability of failing at tj, given still alive
just before time tj.

The independence assumption between the censoring
mechanism and the event time distribution implies that
the hazard of the individuals that are censored is equal to
the hazard of the individuals that remain in follow-up.
This implies that subjects in the risk set are representative
for all subjects alive and therefore the hazard λ(tj) can be
estimated proportion of individuals that fail at time tj; the
estimated hazard λ is given by:

The Kaplan-Meier methodology estimates the proba-
bility of surviving S(t) up to time tj. The probability of sur-
viving up to tj is the product of the probability of
surviving up to the previous time, and the conditional
probability of surviving up to tj given you are still alive
beyond tj-1.

where ∏ means the product of all terms (thus the
Kaplan-Meier estimator is also known as the product limit
estimator).

Competing risks. Estimating the probability of the event
of interest in the presence of competing risks. The situa-
tion for each individual can be summarised in this way:
1) the patient fails from the event of interest; 2) the
patient fails from a competing event at time tj; or 3) the
patient has not failed from either causes but has follow-
up only to time tj.

The fundamental concept in competing risks models is
the cause-specific hazard function, the hazard of failing
from a given cause in the presence of the competing
events. This quantity is estimated as the proportion of
subjects at risk that fail from cause k:

where dkj denotes the number of patients failing from
cause k at time tj. Note that the Kaplan-Meier estimator
can be written as:

where the sum (indicated as ∑) is over all K possible com-
peting events. The survival function in this context is the
probability of not having failed from any cause at time t. The
cumulative incidence function is defined as the probability
of failing from a specific cause k before time t and it is
denoted by Ik(t). In the medical literature the cumulative
incidence is also known as cause specific failure probability,
crude incidence or cause specific risk. The cumulative inci-
dence Ik(t) of cause k at time t is estimated as:
Equation 1

S(tj-1): estimated probability free of any event at time
tj (or the probability of not having failed from any cause at
time i).

When calculating the cumulative incidence by using
the Kaplan-Meier methodology, events from causes other
than k are treated as censored, therefore the naive Kaplan-
Meier estimates the cumulative incidence as:
Equation 2

Note that in Equation 1 the estimated cause-specific haz-
ard λk(tj) is used in the estimation of the cumulative incidence
while in Equation 2 the estimated hazard λ(tj) is employed.
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APPENDIX 2: Which data is necessary to perform a
competing risk analysis?. In order to obtain an
unbiased estimation of the probability of revision sur-
gery, an analysis using a competing risks model is nec-
essary whenever competing risks are present. But which
data should be gathered for such a competing risk
model? With standard survival data, there is only one
type of event, and the number of events is either 0 or 1.
An individual’s survival data is expressed by three varia-
bles: 1) the time the individual becomes at risk (entry
time); 2) the time the individual experiences the event or
is censored (event time); and 3) a variable denoting
whether the event has occurred or was censored (varia-
ble status). According to this representation in our

example the entry time is the date of initial surgery, the
event time is time to revision surgery and status will be
1 if the event has occurred, or 0 if this is not the case. In
a competing risk setting, there are multiple events. In
our example, we have revision surgery and death.
Again, three variables express an individual’s survival
data: the time the individual becomes at risk (entry
time), the time the individual experiences either event or
is censored (event time) and a variable denoting
whether any event is observed or censored (status). In
our setting the variable status will take value 0, 1, or 2,
which represent censored observation, revision surgery
and death, respectively. The event time is time to revi-
sion, time to death or time to last known contact.


