header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

TRANSCUTANEOUS APPLICATION OF CO2 ACCELERATES FRACTURE REPAIR IN RAT

International Society for Fracture Repair (ISFR)



Abstract

Introduction

It is well known that blood flow is a critical key component of fracture repair. Previously, we demonstrated that transcutaneous application of CO2 increased blood flow in the human body. To date, there has been no report investigating the effect of the carbonated therapy on fracture repair.

Hypothesis

We hypothesized that the transcutaneous application of CO2 to fracture site would accelerate fracture repair.

Materials & Methods

A closed femoral shaft fracture was produced in rats. Transcutaneous CO2 absorption enhancing hydrogel and CO2 adaptor that sealed the body surface and retained the gas inside were used for CO2 treatment. Rats without CO2 treatment served as control. Radiographic, biomechanical and histological analysis was performed to assess the fracture repair. Gene expression of chondrogenic, hypertrophic, osteogenic and angiogenic markers was measured by real-time PCR at 1, 2, 3, and 4 weeks post-fracture.

Results

Union rate, biomechanical properties, and gene expression of chondrogenic, hypertrophic, osteogenic and angiogenic markers was significantly higher in CO2 group compared to control group. Histological evaluation demonstrated that enchondral ossification was promoted in CO2 group.

Discussion & Conclusions

Our study indicate that transcutaneous application of CO2 accelerates fracture repair via acceleration of endochondral ossification and vascularization, and may become a novel and useful therapy for promoting fracture repair.