Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A838. NEW BEARING TECHNOLOGY FOR HIP RESURFACING



Abstract

Although metal-on-metal hip resurfacing (MOMHR) is becoming a well accepted indication for young active patients with hip deformities, it does not come without its disadvantages. Longterm bone atrophy, serum metal ion elevation, metal ion hypersensitivity and the formation of pseudotumours have all been reported in the literature. It is thus clear that there is a need for novel bearing technology.

A potentially revolutionary hip resurfacing system comes in the form of the TriboFit® Hip System, which comprises a 2.7 mm-thick acetabular buffer made of polycarbonate-urethane, a hydrophilic, biocompatible, endotoxin-resistant material which mimics the fluid film layer naturally present in hip joints. This is a pliable implant whose modulus of elasticity is the same as that of normal human cartilage, thus providing optimum shock absorption. In addition, it induces lubrication, which is of the utmost importance as friction is almost eliminated, resulting in a subsequent decrease in the production of wear particles. Indeed, in vitro studies have shown that metal wear is 7-fold less than with a comparable metal-on-metal implant.

The TriboFit® Buffer is implanted using flexible mechanical fixation. With a special instrument, a circumferential groove is cut into the patients’ socket. The TriboFit® Buffer is seated by applying gentle pressure, with its ledge snapping tightly into the groove. The surgical technique is bone sparing as no acetabular bone reaming is required whatsoever. The TriboFit® Buffer can be coupled with a select number of metal hip resurfacing femoral components.

In our centre, we have used this novel bearing technology to treat patients with both osteoarthritis (two patients) and avascular necrosis (four patients). The mean patient age was 50 years (range 30 to 63). In five patients who had a well preserved socket anatomy, the TriboFit® Buffer was implanted without reaming the acetabular bone. In one patient with significant osteoarthritic changes of the socket, the TriboFit® Buffer was inserted into a specially manufactured uncemented metal shell, using the TriboFit® Buffer as a liner. The socket was reamed according to the standard reaming technique. In two patients a Birmingham hip resurfacing (BHR) femoral component was used and in the other four an ADEPT component was used.

Rehabilitation was fast and uncomplicated. The mean follow-up of these patients was one year. The mean preoperative Harris hip score (HHS) was 62. The mean HHS at one year was 99 (p = < 0.05). X-rays showed good quality bone at the bone-implant interface. No osteolysis, loosening, or bone rarefaction was observed. At follow-up, two patients resumed sporting activities. One patient resumed skiing while the other resumed biking.

Our pilot study shows that TriboFit® Buffer hip resurfacing arthroplasty is a valid alternative to MOMHR. Compared to the latter, the major advantage includes significantly lower metal wear generation, without any differences in the functional results. This new technology has the potential to expand the use of hip resurfacing to patients with renal malfunction, metal ion allergy/hypersensitivity and to fertile females.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net