header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

UNICOMPARTMENTAL KNEE REPLACEMENT AS A DEFINITIVE IMPLANT: 20 YEAR IN-VIVO WEAR DATA



Abstract

Introduction: Approximately 20% of unicompartmental knee replacement (UKR) revisions are related to polyethylene wear. The Phase 1 Oxford UKR was introduced as a design against wear, with a fully congruent mobile bearing. The Phase 2 implant was introduced with new instrumentation (femoral mill) and changes to the bearing shape (lower anterior wall) to reduce the incidence of anterior impingement. We have previously shown that the Oxford UKR has a wear rate of 0.02 mm/year at ten years, in well functioning devices, but that higher wear rates can be seen with impingement or if the congruous articulation is lost. The aim of this study was to determine the 20 year in-vivo wear of the Oxford Phase 1 and Phase 2 UKR, using Roentgen Stereophotogrammetric Analysis (RSA).

Method: We measured the in-vivo wear of 6 Phase 1 (5 patients, mean age 65.24 years) and 7 Phase 2 (4 patients, mean age 63.43) Oxford UKR bearings. Average time since surgery was 22.37 years and 19.46 years for the Phase 1 and Phase 2 implants respectively. Selection criteria included patients who were mobile, with an exercise tolerance greater than 100m as per the American Knee Society Score (AKSS) functional questionnaire. RSA x-rays were taken with the knee in the normal anatomical position on standing and with the knee flexed to 30o. The Oxford knee score (OKS) and AKSS were gained at the RSA examination. Phase 1 and 2 components were reverse engineered by laser scanning, and converted to CAD models. The CAD models of the tibia and femur were pose-estimated in the RSA software (Medis Specials, Leiden, Netherlands). A sphere was fit to the femoral component and the minimum bearing thickness was determined by measuring the shortest perpendicular distance between the sphere and the plane contained on the tibial tray articular surface. The linear wear for each bearing was calculated by subtracting the measured thickness from the corrected nominal bearing thickness. Non-parametric statistics were used to compare the two Phases.

Results: There was no significant difference in age, OKS and AKSS between the two groups. The median wear rate was 0.078 mm/year for Phase 1 and 0.023 mm/year for Phase 2. This difference was statistically significant (p = 0.027).

Discussion: The difference in wear rate is explained by impingement in Phase 1, which was reduced by design changes with the introduction of Phase 2; the Phase 2 is designed to avoid impingement between the femur and the bearing. This study demonstrates that very low wear rates can be maintained with the Phase 2 implant to the end of the second decade after implantation. This is of particular importance when the device is used in younger patients and demonstrates that the Oxford UKR can be a definitive implant for the treatment of isolated compartmental osteoarthritis.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Tel: +41 44 448 44 00; Email: office@efort.org

Author: Benjamin Kendrick, United Kingdom

E-mail: ben.kendrick@ndorms.ox.ac.uk