Abstract
Introduction Approximately one quarter of spinal cord injury patients will develop post-traumatic syringomyelia. This condition can produce devastating neurological deficits, and treatment is often not successful. The pathogenesis is unknown, however it is likely that initial cyst formation plays an important role in subsequent syrinx development. An up-regulated inflammatory process observed following contusive and transective spinal cord injury has been proposed as a contributory factor in secondary spinal cord damage. Specifically, a depletion or suppression of macrophages following injury is shown to preserve neurons and myelinated axons. This study examines the role of inflammation following excitotoxic spinal cord injury, a potent precursor to syrinx formation.
Methods Twenty-four male Sprague-Dawley rats were divided into six groups. Twenty rats received four 0.5 μL injections of 24 mg/ mL quisqualic acid and 1% Evans blue from the rostral C8 to the caudal T1 level. Ten microlitres of 250 mg/ mL kaolin were then injected into the subarachnoid space. Animals were sacrificed at 1, 5, 10, 20 or 50 days following the injections. There were four normal control animals. Spinal cord tissue was frozen and sectioned, and cytoplasmic antigen ED1 was detected immunohistochemically with anti-ED1 antibody. This antibody is specific to phagocytic macrophages and reactive microglia. The area and density of ED1 was semi-quantitated.
Results Few ED1 positive cells were observed in normal controls in the subarachnoid space (SAS) and cord vessels. Day 1 animals displayed ED1 positive cells within 50% of the subarachnoid space. ED1 positive cells within cord vessels were also slightly increased (10%). Day 5 animals showed strong staining through 50% of grey matter, predominantly on the side of injury. This was also observed in cord above and below the level of Quisqualic Acid injection. Arachnoiditis was observed by day 10 combined with strong staining through grey and white matter. ED1 positive staining area was again increased by day 20, comprising 70% grey matter on the injured and non-injured sides of the cord, which was limited to the level Quisqualic Acid injection. By day 50 moderate staining was observed in the SAS and white matter.
Discussion Cytoplasmic antigen ED1 cells were observed, reaching a peak at 20 days following excito-toxic spinal cord injury. Phagocytic macrophage proliferation might play a role in secondary spinal cord damage and initial cyst formation. The role of macrophages and the release of their inflammatory cytokines, reactive nitrogen and oxygen intermediates require further examination.
The abstracts were prepared by Professor Bruce McPhee. Correspondence should be addressed to him at Orthopaedics Division, The University of Queensland, Clinical Sciences Building, Royal Brisbane & Women’s Hospital, Herston, Qld, Australia