Abstract
Introduction and Aims: Midcarpal instability is a common cause of wrist pain that remains poorly understood. A simple surgical treatment has been developed involving plication of the dorsal wrist capsule and ligaments. We hypothesised that: wrist stiffness varies in the population; laxity permits excessive displacement; and plication stiffens the joint decreasing motion.
Method: Twelve human cadaveric forearms were potted using bone cement and were secured to the stationary baseplate of a slider. The hand was fixed through the metacarpal bones to the mobile section of the slider, and a compressive load was applied. With the wrist positioned in neutral orientation, a force was applied by an Instron mechanical testing machine (Model 8874, Instron, Canton, MA), simulating a midcarpal shift test. Stiffness (force/displacement) was measured at baseline, with the capsule sectioned, and then following a surgical procedure consisting of plicating the ligaments and capsule with three mattress sutures at the midcarpal joint.
Results: Baseline testing revealed large variability in midcarpal joint stiffness: mean baseline stiffness was 16.5 + 5.9 N/mm, ranging from 9.3 to 28.1 N/mm. Following plication/repair, mean stiffness increased significantly by 20% to 19.8 + 8.5 N/mm (p < 0.02). All surgical repairs withstood the testing without failure. These data confirm a wide range of laxity at the midcarpal joint and provide a mechanical basis for the success observed with capsular plication of the joint.
This increased stiffness decreases motion under comparable loading conditions. In individuals who have excessive motion causing wrist symptoms, increasing the stiffness by capsular plication of the supporting ligaments decreases the motion to relieve symptoms. This technique has found success in clinical practice to relieve symptoms in patients with midcarpal instability.
Conclusion: Midcarpal joint stiffness spanned a threefold range supporting our hypothesis that there is a large variation of ligament laxity in the population. Suturing the dorsal wrist capsule and underlying ligaments significantly increased the stiffness of the wrist when a volar force was applied across the midcarpal joint.
These abstracts were prepared by Editorial Secretary, George Sikorski. Correspondence should be addressed to Australian Orthopaedic Association, Ground Floor, The William Bland Centre, 229 Macquarie Street, Sydney, NSW 2000, Australia.
At least one of the authors is receiving or has received material benefits or support from a commercial source.