Abstract
Introduction: Surface replacement of the hip has been proposed as an alternative to total hip replacement, particularly in young active patients. The suggested benefits include preservation of bone stock for future revision surgery and avoidance of proximal femoral stress protection, which can cause bone resorption. However, following femoral head resurfacing, femoral neck fracture can occur.
The aim of this study was to compare the strain pattern in intact and resurfaced femurs using validated third generation composite femurs and rosette strain gauges.
Methods: Rosette strain gauges were applied to an intact and a resurfaced third generation composite femur at three sites; narrowest part of the lateral surface of the neck, narrowest part of the medial surface of the neck and medial surface at the level of lesser trochanter. The femurs were loaded with axial loads of 600N, 800N and 1000N sequentially. The tests were repeated thrice for each femur. Maximum and minimum principal strains were calculated.
Further tests were carried out in which an abductor load was included in the model. Testing was done at 600N and repeated thrice for each femur. The principal strains were calculated and compared with the the principal strains without the abductor load.
Results: The maximum principal strains in the resurfaced femur were approximately 50% higher in the lateral surface of the neck and about 30% higher in the lesser trochanteric region when loaded without including an abductor force. Inclusion of the abductor force decreased the strain particularly at the lateral surface of the neck by approximately 45% in the intact femur and approximately 25% in the implanted femur. Even with the inclusion of the abductor load the strain in the resurfaced femur remained more than 50% higher at the lateral surface of the neck and 20% higher in the lesser trochanteric region.
Conclusion: Our study suggests that proximal femoral stress protection will not occur following surface replacement of the hip. The increased strain at the lateral surface of the neck could result in fracture, particularly if there is notching of the neck or if abductor function has been compromised, which can happen particularly with the direct lateral approach.
Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.