Abstract
Introduction: Functional outcome following proximal tibial replacement can be impaired by extensor mechanism inefficiency. Current methods used to re-attach the patellar tendon result in varied levels of extensor function. Successful attachment of the patellar tendon requires initial mechanical stability and long-term biological fixation. We have employed a prosthesis, to model patellar tendon re-attachment, to test the hypothesis that biological augmentation of an implant which can provide sufficient mechanical integrity will allow a tendon-implant interface to develop that is similar in function and morphology to a normal tendon-bone interface.
Methods: The right patellar tendon in 24 Skeletally mature Friesland ewes was transfixed between the interlocking spikes of a hydroxyapatite-coated, customized tendon clamp to simulate patellar tendon re-attachment to a proximal tibial replacement. In 12 animals (Autograft group) the clamp attachment was augmented with autologous cancellous bone and marrow graft harvested from the ipsilateral iliac crest at the time of surgery, whilst the remaining animals (HA group) served as un-supplemented controls. Functional outcome was assessed using force plate measurements and two-dimensional optical kinematic gait analysis. Animals were euthanised at 6 and 12 weeks. The specimens were harvested, processed for histology and examined using light microscopy.
Results: The clamp device provided sufficient mechanical fixation of the patellar tendon to allow immediate weight bearing. Gait analysis showed that the range of movement of the stifle (knee) joint was not compromised by the surgical intervention at 6 or 12 weeks post-operation. An extensor lag observed at 6 weeks in both the Autograft and HA group was seen to fully recover by 12 weeks post-operation. There was a significant increase in functional weight bearing through the operated limb of the Autograft group animals between 6 and 12 weeks, which was not observed in the HA group. The tendon-implant interface in the HA group animals showed a fibrous tissue encapsulation of the HA coated surface, with collagen fibrils running parallel to the implant surface. In the Autograft group at 6 weeks post-operation a soft tissue – bone – HA interface had developed, similar in morphology to that of an indirect-type enthesis. Perpendicular orientated Sharpey’s-like fibres were observed spanning the region between the tendon and the HA coated implant and the bone graft material was seen to be undergoing active remodelling. By 12 weeks post-operation the interface was layered with regions of fibrocartilage clearly visible, more closely resembling the morphology of a direct-type enthesis.
Discussion: The clamp device provided sufficient mechanical fixation of the patellar tendon to allow immediate use the operated limb. The incorporation of a bio-active implant coating and biological augmentation encouraged a neo-enthesis to develop with near normal functional properties, and morphology similar to that of a normal patellar tendon-bone direct-type enthesis.
Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.