Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

KNEE KINEMATICS OF TWO DIFFERENT SAGITTAL DESIGN IMPLANTS



Abstract

Sagittal knee implant design, together with soft tissue and alignment, determines the kinematics of an artificial knee joint. A single-radius design was thought to improve the kinematics and biomechanics of a knee joint prosthesis and therefore also improve rehabilitation. Two total knee joint prosthesis designs, differing only in their sagittal geometry, were compared in vivo.

To determine the three-dimensional kinematics and difference between a multi-radius and single-radius implants, six patients, all one-year postoperative, were subjected to video-fluoroscopy while walking on a treadmill, stepping up and down a 20-cm step and doing deep lunges.

In a clinical evaluation, differences in range of motion, functional knee score, 40-cm chair raise and anterior pain at 6 weeks and 3, 6 and 12 months were compared in 86 patients with multi-radius and 108 patients with single-radius implants. The age of the patients in the two groups was similar and ranged from 68 to 70 years.

Fluoroscopically-determined flexion was 105° in the multi-radius group and 123° in the single-radius group (p < 0.01). External rotation and lateral condyle movement was statistically similar. The single-radius group did not exhibit paradoxical motion of the medial condyle and had less overall movement. The objective knee scores did not differ significantly (p > 0.05). Patients in the single-radius group gained flexion significantly faster (p < 0.001). After one year, there was no difference between the groups. Three months postoperatively, 72% of the single-radius group could rise from a chair without using their arms, compared to 40% of the multi-radius group (p < 0.001). Although this improved in both groups, it remained superior in the single-radius group. Anterior knee pain was present in 59% of the multi-radius group and in only 18% of the single-radius group at three months (p < 0.001). At one-year follow-up, 4% of the single-radius and 29% of the multi-radius groups respectively complained of anterior knee pain (p < 0.001).

A single-radius sagittal design knee prosthesis leads to faster rehabilitation better and kinematics than a multi-radius design. The reduced movement of the condyles on the polyethylene insert should result in less long-term wear.

The abstracts were prepared by Professor M.B.E. Sweet. Correspondence should be addressed to him at PO Box 47363, Parklands, Johannesburg 2121, South Africa.