Abstract
The relative motion between a prosthesis, the cement mantle and its’ host bone during weight bearing is not well understood. Using Radiostereophotogrammetric Analysis (RSA), we examined the dynamically inducible micromotion that exists at these interfaces when an increased load is placed through the prosthesis.
Dynamically inducible micromotion was measured in the femoral components of 21 subjects undergoing total hip replacement with polished Exeter stems. Two standing RSA studies were performed, at 3 and 12 months postoperatively. Firstly in double-leg stance, and secondly fully weight bearing through the operated hip.
Subjects had no signs of clinical or radiological signs of loosening at 1 year. Significant micromotion was detected at the prosthesis-cement interface at 3 months.
Similar patterns of micromotion were observed at 12 months. The prosthesis appeared to bend during single-leg stance weight bearing, however this accounted for less than half of the total observed movement.
Conventional RSA studies were conducted at 3 months, 6 months and 1 year to confirm that the implants showed normal migration patterns.
This study demonstrates that movement exists between the prosthesis and bone during cyclical weight bearing. This dynamically inducible micromotion probably occurs at the prosthesis-cement interface. It could account for the wear that is observed on the surface of retrieved secure prostheses. This may be a mechanism by which failure eventually occurs.
The abstracts were prepared by Nico Verdoschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, Universitair Medisch Centrum, Orthopaedie / CSS1, Huispost 800, Postbus 9101, 6500 HB Nijmegen, Th. Craanenlaan 7, 6525 GH Nijmegen, The Netherlands.