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A) Causal Forest Method Details 

For each patient i = 1, ..., 1,187 in the dataset, we observe a binary treatment indicator 

Di (1 = cemented hemiarthroplasty, 0 = uncemented hemiarthroplasty), a matrix of 

baseline characteristics of patient i denoted by Xi  that includes the 20 covariates that 

may act as treatment modifiers (Table i) and a set of outcomes, Yi,j, where j indexes the 

outcomes. The outcomes are listed in Table ii. We consider a generic outcome Yi  for the 

methods’ description. We describe the method using the Neyman-Rubin potential 

outcomes framework.1,2 

Theoretically, two potential outcomes are possible for each patient i: Yi(0) 

corresponding to the scenario where patient i is assigned to the uncemented 

hemiarthroplasty group, and Yi(1) signifying the outcome had patient i been assigned 

to the cemented group. However, the fundamental problem of causal inference3 

manifests since, at most, one of the two potential outcomes is ever observed for each 

patient. The observed outcome Yi can be represented as Yi = Di × Yi(1) + (1 − Di) × Yi(0), 

and the effect of the intervention on the outcome for patient i will be τi = Yi(1) − Yi(0). 

In this study, the estimands of interest can be obtained by aggregating the τi’s: the 

average treatment effect (ATE) quantifies the overall effect on the population, and the 

conditional average treatment effects (CATE) quantify the average patient-level effect 

given their baseline characteristics (Xi = x), which can then be aggregated for 

subgroups of interest. 

ATE = E(τi) (1) 

CATE(x) = τi(x) = E(τi|Xi = x) (2) 



 

When incorporating the covariates X into the model, a reformulation of the 

observed outcome Y can be expressed as follows:4 

 Yi = µi(X) + Di × τi(X) + E (3) 

Where µi(X) represents the prognostic effect that results from the impact of a 

subset of covariates X, while the subset of treatment moderators are included in τi(X). 

If the treatment assignment is assumed to be non-deterministic, the conditional mean 

of Y will be represented as:4 

 E(Yi|Xi = x) = µi(x) + ei(x) × τi(x) = mi(x) (4) 

where ei(x) is the propensity score that is estimated by regressing the treatment on the 

covariates, and mi(x) is referred to as the marginal mean. 

A.1) Causal forest 

To estimate the CATE(x), we apply the causal forest method,5 which is a generalization 

of the random forest of Breiman6 to the estimation of treatment effects. Athey and 

Imbens7 modified the classification and regression tree (CART) prediction approach to 

construct a ‘causal tree’ which focuses on estimating the expected conditional 

treatment effects, τi(x), rather than predicting the outcome (Yi), as is done in a 

traditional CART. To achieve this, equation (3) is rewritten as:5 

(Yi|Xi = x) = mi(x) − mi(x) + µi(X) + Di × τi(X) + E 

(5) 

= mi(x) + τi(X)(Di − ei(x)) + E 

This representation enables the estimation of the treatment effects �̂�𝜏𝑖𝑖(x) through a 

two-step process initiating by regression of outcome and treatment on covariates to 

obtain estimates of marginal mean 𝑚𝑚�𝑖𝑖(x) and the propensity �̂�𝑒𝑖𝑖(x), respectively. 

Subsequently, the estimates of interest �̂�𝜏𝑖𝑖(x) are derived by selecting �̂�𝜏𝑖𝑖(X) which 

minimizes the loss function as defined by Equation (6):4 

1
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 This local centring algorithm enhances the model’s robustness to potential 

confounding effects.8 

Furthermore, an ‘honest’ estimation is implemented where partitioning and estimating 

the effects are conducted on distinct subsamples to prevent overfitting and provide 

correct inference. That is, the splitting criterion of the causal tree aims to minimize the 

expected mean squared error (EMSE) of the treatment effects, is defined as:7 
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where, Strain is the training subsample that is used to construct the tree T, Sest is the 

estimation subsample which is different from the training subsample, N est is the 

number of patients in the estimation sample, N tr is the number of patients in the 

training subsample, L is a ‘leaf’ (i.e. a subgroup defined by the splits) in tree T, 

𝐸𝐸2𝑆𝑆
𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑐𝑐(𝐿𝐿)
𝑡𝑡𝑡𝑡  and 𝐸𝐸𝑆𝑆

𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑐𝑐(𝐿𝐿)
𝑡𝑡𝑡𝑡
2 are the within-leaf variances of outcomes for the 

patients at the two treatment arms, and p is the marginal treatment probability P(Di = 

1) which is constant and does not depend on Xi in fully randomized experiments such 

as the WHiTE 5 trial considered here. 

This splitting criterion is constructed to prefer leaves exhibiting heterogeneous 

effects by maximizing the first term of equation (7), and simultaneously, leaves with a 

good fit by minimizing the within-leaf variance. However, an individual tree can be too 

noisy. To overcome this, Wager and Athey (2018) 5 proposed the CF which generates an 

ensemble of B causal trees, each of which produces an estimate �̂�𝜏𝑏𝑏(X), which are then 

aggregated to obtain a CATE estimate, �̂�𝜏(X). The �̂�𝜏𝑖𝑖(X) estimates are estimated using an 

adaptive locally weighted estimator9 such that: 

�̂�𝜏𝑖𝑖(𝑥𝑥) = ∑ 𝛼𝛼𝑖𝑖 (𝑥𝑥)(𝑌𝑌𝑖𝑖𝑐𝑐
𝑖𝑖=1 −𝑚𝑚� (−𝑖𝑖)(𝑋𝑋𝑖𝑖))(𝐷𝐷𝑖𝑖−�̂�𝑒(−𝑖𝑖)(𝑋𝑋𝑖𝑖))

∑ 𝛼𝛼𝑖𝑖𝑐𝑐
𝑖𝑖=1 (𝑥𝑥)(𝐷𝐷𝑖𝑖−�̂�𝑒(−𝑖𝑖)(𝑋𝑋𝑖𝑖))²

                                                                  (8) 

   

where the superscript (−i) denotes the out-of-bag predictions which are obtained 

from the subsample of trees where observation i was not used to determine the splits, 

𝑚𝑚� (x) is the estimated conditional mean outcome E[Yi|Xi = x] obtained by fitting a 

regression forest, �̂�𝑒(x) is the estimated conditional propensity score P[Di = 1|Xi = x] 



 

obtained by fitting a binary regression forest, and 𝛼𝛼�(x) is the weight given to 

observation i which measures how often observation i is assigned to the same leaf 

that the point (x) lies within.9 This method is implemented in the generalized random 

forest R package grf.10 We estimate CATEs for our pre-specified subgroups by taking 

the estimated patient-level treatment effects and plugging them into an augmented 

inverse propensity weighting AIPW estimator11 of group average treatment effects.12 

 

A.2) AIPW estimator 

The strength of the AIPW estimator11 stems from its double robustness property, which 

means that the estimates of the average treatment effects of the population and the 

subgroups remain consistent even if one of the propensity or outcome regression 

forests is mis-specified.13 Glynn and Quinn13 provided a theoretical and experimental 

evidence of its superiority over other estimators such as: regression estimator, inverse 

propensity weighted (IPW) estimator, and propensity score matching estimator. 

In our study, the AIPW scores that are averaged to obtain the ATE and CATE 

estimates are obtained using the following formula:14 

𝛾𝛾�𝑖𝑖 = 𝑚𝑚�𝑖𝑖(𝑋𝑋𝑖𝑖 , 1) −𝑚𝑚�𝑖𝑖(𝑋𝑋𝑖𝑖 , 0) + 𝑌𝑌𝑖𝑖−𝑚𝑚�𝑖𝑖(𝑋𝑋𝑖𝑖,𝐷𝐷𝑖𝑖))(𝐷𝐷𝑖𝑖−�̂�𝑒(𝑋𝑋𝑖𝑖))
�̂�𝑒(𝑋𝑋𝑖𝑖)(1−�̂�𝑒(𝑋𝑋𝑖𝑖))

                                                     (9) 

where 𝑚𝑚�𝑖𝑖(x,d) = E[Yi(d)|Xi = x] denotes the nonparametric estimate of the 

conditional mean of the treatment group. 

 

B) Application of CF approaches to estimate group ATEs in the WHiTE 5 Trial 

We implement the CF for each outcome using 20,000 trees. This number of trees is 

large enough to make the perturbation error – which results from fitting different 

forests – negligible to the variances of the estimated CATEs.10 All other tuning 

hyperparameters (sample fraction used to build each tree, number of variables tried 

for each split, minimum number of individuals in each tree leaf, honesty fraction, and 

parameters which determine the imbalance of the splits) are determined using cross-

validation. 

The forests were fitted in two stages.15 During the first stage, the model is fitted 

over all covariates. The second stage considers only the most important covariates, i.e. 

those whose importance exceeds 20% of the average importance (see Figure b.1), 



 

where importance is defined as the simple weighted sum of how many times each 

covariate was used to determine the sample split at each depth in the forest.9 Then, we 

regressed the estimated CATEs on the most important covariates, and obtained the 

estimates of best linear projection along with coefficient standard errors (see Figure a). 

To test for heterogeneity, omnibus heterogeneity tests were performed, and their 

results are presented in Supplementary Table i. This test yields two parameters: ATE 

parameter to test the null hypothesis of good calibration of the ATE, where a value of 1 

indicates a correct mean forest. The second parameter is the Heterogeneity parameter, 

also with a value of 1 indicating well calibrated estimates of heterogeneity within the 

forest. If the Heterogeneity parameter is positive, its associated p-value indicates the 

strength of evidence supporting the null hypothesis of no heterogeneity.9 However, the 

calibration tests indicate the absence of heterogeneity, since the heterogeneity 

parameter is negative for the six outcomes. 

Furthermore, we applied the rank-weighted average treatment effect (RATE) metric 

proposed by Yadlowsky et al16 to test to examine the presence of substantial 

heterogeneity, and to assess the strength of our CATE estimates are at distinguishing 

subpopulations with different treatment effects. Particularly, we aim to measure the 

benefit there is to prioritizing cemented therapy provision based on the heterogeneity 

that is identified by our causal forest. This approach assigns, based on the estimated 

CATEs, a higher score to patients estimated to benefit more from cemented therapy 

and a lower score to those with lower benefit compared to uncemented one. The 

benefit refers to the expected increase in outcomes when providing the cemented 

therapy to a fraction of the population with the highest prioritization scores as 

opposed to giving the therapy to a randomly selected fraction of the same size. The 

figures (see Figure a) depict the target operator characteristic (TOC) curves on the 

outcomes. These curves chop the population up into groups defined by above 

mentioned scores, then plot this over all groups where each group is the top q-th 

fraction of patients with the largest score. 

  



 

Table i. Calibration tests. 

Outcome ATE parameter (SE) p-value Heterogeneity parameter (SE) p-value 
1 mth     
EQ-5D Index 1.01 (0.479) 0.02 -1.61 (-1.76) 0.96 
EQ-5D VAS 1.01 (0.756) 0.09 -1.14 (0.828) 0.92 
4 mths     
EQ-5D Index 1.01 (0.844) 0.12 -0.74 (0.760) 0.84 
EQ-5D VAS 1.04 (1.174) 0.19 -1.69 (0.979) 0.96 
12 mths     
EQ-5D Index 1.26 (4.789) 0.40 -1.50 (1.052) 0.92 
EQ-5D VAS 0.94 (2.186) 0.33 -18.27 (2.203) 1.00 

ATE, average treatment effect; EQ-5D, EuroQol five-dimension health questionnaire; 
SE, standard error; VAS, visual analogue scale. 

 

Fig a. Causal forest approaches to estimate group average treatment effects. VAS, 
visual analogue scale. 

 

 



 

Table ii. Outcome characteristics. 
Outcome Overall Uncemented Cemented p-value* 

Baseline     

Total, n 956 484 472  

EQindex, Median (IQR) 0.64 (0.38 to 0.80)      0.64 (0.38 to 0.79)     0.65 (0.40 to 0.80)     0.260* 

EQ-5D VAS score, Median 
(IQR) 

60.0 (50.0 to 80.0)      65.0 (50.0 to 80.0)   60.0 (50.0 to 80.0)   0.640* 

Missing, n (%) 231 (19.5) 111(18.7) 120 (20.3)  

1 mth     

Total, n 827 408 419  

EQindex, Median (IQR) 0.48 (0.08 to 0.66)      0.42 (0.71 to 0.64) 0.53 (0.09 to 0.68) 0.010* 

EQ-5D VAS, Median (IQR) 60.0 (45.0 to 75.0)      60.0 (40.0 to 75.0)   60.0 (50.0 to 80.0)   0.060* 

Missing, n (%) 360 (30.3) 187 (31.4) 173 (29.2)  

4 mths     

Total, n 579 285 294  

EQindex, Median (IQR) 0.55 (0.12 to 0.70) 0.52 (0.09 to 0.69) 0.57 (0.14 to 0.71) 0.110* 

EQ-5D VAS score, Median 
(IQR) 

60.0 (50.0 to 80.0) 60.0 (50.0 to 75.0) 65.0 (50.0 to 80.0) 0.220* 

Missing, n (%) 608 (51.2) 310 (52.1) 298 (50.3)  

12 mths     

Total, n 104 117 221  



 

EQindex, Median (IQR) 0.54 (0.13 to 0.72) 0.52 (0.12 to 0.73) 0.58 (0.16 to 0.71) 0.460* 

EQ-5D VAS score, Median 
(IQR) 

60.0 (50.0 to 80.0) 60.0 (50.0 to 80.0) 62.5 (50.0 to 80.0) 0.860* 

Missing, n (%) 966 (81.4) 491 (82.5) 475 (80.2)  

EQ-5D, EuroQol five-dimension health questionnaire; IQR, interquartile range; VAS, visual analogue scale. 

*Kruskal-Wallis test.  



 

Table iii. Covariates, month 1. 
Covariate Overall Uncemented Cemented p-value 

Total, n 827 408 419  

Median age, yrs (IQR) 86.0 (80.0 to 90.0) 86.0 (80.25 to 90.0) 85.0 (80.0 to 90.0) 0.920* 

Median EQ-5D (IQR) 0.48 (0.08 to 0.66)      0.42 (0.71 to 0.64) 0.53 (0.09 to 0.68) 0.010* 

Median EQ-5D VAS (IQR) 60.0 (45.0 to 75.0)      60.0 (40.0 to 75.0)   60.0 (50.0 to 80.0)   0.060* 

Type of consent, n (%)    0.076† 

Individual consent 338 (40.9) 182 (44.6) 156 (37.2)  

Proxy consent 408 (49.3) 192 (47.1) 216 (51.6)  

Missing 81 (9.8) 34 (8.3) 47 (11.2)  

Sex, n (%)    0.166† 

Male 573 (69.3) 273 (66.9) 300 (71.6)  

Female 254 (30.7) 135 (33.1) 119 (28.4)  

Current smoker, n (%)    0.110† 

No 752 (90.9) 377 (92.4) 375 (89.5)  

Yes 62 (7.5) 24 (5.9) 38 (9.1)  

Missing 13 (1.6) 7 (1.7) 6 (1.4)  

Chronic renal failure, n (%)    0.888† 

No 762 (92.1) 373 (91.4) 389 (92.8)  

Yes 55 (6.7) 28 (6.9) 27 (6.4)  



 

Missing 10 (1.2) 7 (1.7) 3 (0.7)  

Diabetes n (%)    0.740† 

No 680 (82.2) 336 (82.4) 344 (82.1)  

Yes 135 (16.3) 64 (15.7) 71 (16.9)  

Missing 12 (1.5) 8 (2.0) 4 (1.0)  

Alcohol consumption, n (%)    0.792† 

0 to 7 units/wk 735 (88.9) 364 (89.2) 371 (88.5)  

8 to 14 units/wk 39 (4.7) 18 (4.4) 21 (5.0)  

15 to 21 units/wk 17 (2.1) 9 (2.2) 8 (1.9)  

> 21 units/wk 18 (2.2) 7 (1.7) 11 (2.6)  

Missing 18 (2.2) 10 (2.5) 8 (1.9)  

Residence status before injury, n (%)     

Own home/sheltered housing 629 (76.1) 299 (73.3) 330 (78.8) 0.172† 

Residential care 93 (11.2) 50 (12.3) 43 (10.3)  

Nursing care 105 (12.7) 59 (14.5) 46 (11.0)  

 
EQ-5D, EuroQol five-dimension health questionnaire; IQR, interquartile range; VAS, visual analogue scale. 

*Kruskal-Wallis test. 

†Chi-squared test. 

  



 

Table iv. Covariates, month 4. 
Covariate Overall Uncemented Cemented p-value 

Total, n 579 285 294  

Median age, yrs (IQR) 85.0 (80.0 to 89.0) 85.0 (80.0 to 89.0) 85.0 (79.0 to 89.25) 0.940* 

Median EQ-5D (IQR) 0.55 (0.12 to 0.70) 0.52 (0.09 to 0.69) 0.57 (0.14 to 0.71) 0.110* 

Median EQ-5D VAS (IQR) 60.0 (50.0 to 80.0) 60.0 (50.0 to 75.0) 65.0 (50.0 to 80.0) 0.220* 

Type of consent, n (%)    0.127† 

Individual consent 215 (37.1) 115 (40.4) 100 (34.0)  

Proxy consent 292 (50.4) 135 (47.4) 157 (53.4)  

Missing 72 (12.4) 35 (12.3) 37 (12.6)  

Sex, n (%)    0.072† 

Male 411 (71.0) 192 (67.4) 219 (74.5)  

Female 168 (29.0) 93 (32.6) 75 (25.5)  

Current smoker, n (%)    0.292† 

No 516 (89.1) 257 (90.2) 259 (88.1)  

Yes 49 (8.5) 20 (7.0) 29 (9.9)  

Missing 14 (2.4) 8 (2.8) 6 (2.0)  

Chronic renal failure, n (%)    0.771† 

No 529 (91.4) 258 (90.5) 271 (92.2)  

Yes 40 (6.9) 21 (7.4) 19 (6.5)  



 

Missing 10 (1.7) 6 (2.1) 4 (1.4)  

Diabetes n (%)    0.752† 

No 477 (82.4) 232 (81.4) 245 (83.3)  

Yes 92 (15.9) 47 (16.5) 45 (15.3)  

Missing 10 (1.7) 6 (2.1) 4 (1.4)  

Alcohol consumption, n (%)    0.425† 

0 to 7 units/wk 506 (87.4) 252 (88.4) 254 (86.4)  

8 to 14 units/wk 34 (5.9) 216 (5.6) 18 (6.1)  

15 to 21 units/wk 9 (1.6) 3 (1.1) 6 (2.0)  

> 21 units/wk 13 (2.2) 4 (1.4) 9 (3.1)  

Missing 17 (2.9) 10 (3.5) 7 (2.4)  

Residence status before injury n 
(%) 

    

Own home/sheltered housing 452 (78.1) 217 (76.1) 235 (79.9) 0.486† 

Residential care 66 (11.4) 34 (11.9) 32 (10.9)  

Nursing care 61 (10.5) 34 (11.9) 27 (9.2)  

EQ-5D, EuroQol five-dimension health questionnaire; IQR, interquartile range; VAS, visual analogue scale. 

*Kruskal-Wallis test. 

†Chi-squared test. 

  



 

Table v. Covariates, month 12. 
Covariate Overall Uncemented Cemented p-value 

Total, n 104 117 221  

Median age, yrs (IQR) 85.0 (79.0 to 90.0) 85.0 (79.0 to 89.0) 85.0 (79.0 to 90.0) 0.470* 

Median EQ-5D (IQR) 0.54 (0.13 to 0.72) 0.52 (0.12 to 0.73) 0.58 (0.16 to 0.71) 0.460* 

Median EQ-5D VAS (IQR) 60.0 (50.0 to 80.0) 60.0 (50.0 to 80.0) 62.5 (50.0 to 80.0) 0.860* 

Type of consent, n (%)    0.004† 

Individual consent 73 (33.0) 45 (43.3) 28 (23.9)  

Proxy consent 115 (52.0) 45 (43.3) 70 (59.8)  

Missing 33 (14.9) 14 (13.5) 19 (16.2)  

Sex, n (%)    0.389† 

Male 156 (70.6) 70 (67.3) 86 (73.5)  

Female 65 (29.4) 34 (32.7) 31 (26.5)  

Current smoker, n (%)    0.074† 

No 199 (90.0) 98 (94.2) 101 (86.3)  

Yes 17 (7.7) 4 (3.8) 13 (11.1)  

Missing 5 (2.3) 2 (1.9) 3 (2.6)  

Chronic renal failure, n (%)    0.041† 

No 207 (93.7) 94 (90.4) 113 (96.6)  

Yes 11 (5.0) 9 (8.7) 2 (1.7)  



 

Missing 3 (1.4) 1 (1.0) 2 (1.7)  

Diabetes n (%)    0.913† 

No 190 (86.0) 89 (85.6) 101 (86.3)  

Yes 28 (12.7) 14 (13.5) 14 (12.0)  

Missing 3 (1.4) 1 (1.0) 2 (1.7)  

Alcohol consumption, n (%)    0.272† 

0 to 7 units/wk 194 (87.8) 95 (91.3) 99 (84.6)  

8 to 14 units/wk 13 (5.9) 4 (3.8) 9 (7.7)  

15 to 21 units/wk 2 (0.9) 0 (0) 2 (1.7)  

> 21 units/wk 6 (2.7) 2 (1.9) 4 (3.4)  

Missing 6 (2.7) 3 (2.9) 3 (2.6)  

Residence status before injury n 
(%) 

   0.441† 

Own home/sheltered housing 182 (82.4) 84 (80.8) 98 (83.8)  

Residential care 21 (9.5) 9 (8.7) 12 (10.3)  

Nursing care 18 (8.1) 11 (10.6) 7 (6.0)  

EQ-5D, EuroQol five-dimension health questionnaire; IQR, interquartile range; VAS, visual analogue scale. 
*Kruskal-Wallis test. 
†Chi-squared test. 
 



 

Fig b. Caterpillar plots. This graph shows the individualized effect. CATE, conditional 
average treatment effect; VAS, visual analogue scale.
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