header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 488 - 488
1 Sep 2012
Chan O Coathup M Hing K Buckland T Campion C Blunn G
Full Access

INTRODUCTION

Autologous bone grafts are considered gold standard in the repair of bone defects. However they are limited in supply and are associated with donor site morbidity. This has led to the development of synthetic bone graft substitute (BGS) materials, many of which have been reported as being osteoinductive. The structure of the BGS is important and bone formation has been observed in scaffolds with a macroporous morphology. Smaller pores termed ‘strut porosity’ may also be important for osteoinduction. The aim of this study was to compare the osteoinductive ability of one silicate-substituted calcium phosphate (SiCaP) with differing strut porosities in an ectopic ovine model. Our hypothesis was that SiCaP with greater strut porosity would be more osteoinductive.

METHODS

The osteoinduction of SiCaP BGS with two different strut porosities (AF and AF++) was investigated. The materials had an identical chemical composition and morphological structure but differing strut porosity (AF=22.5%, AF++=47%). Implants were inserted into the paraspinal muscles in skeletally mature sheep. Procedures were carried out in compliance with UK Home Office regulations. There were 12 implants in each group. Implants remained in vivo for 8 and 12 weeks and on retrieval were prepared for undecalcified histology. Sections were stained and examined using light microscopy. A line intersection method was used to quantify bone, implant and implant surface/bone contact within seven random regions of interest along each implant. A Mann-Whitney U test was used for statistical analysis where p values < 0.05 were considered significant.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 101 - 101
1 Sep 2012
Maempel J Coathup M Calleja N Cannon S Briggs T Blunn G
Full Access

Background

Extendable proximal femoral replacements(PFR) are used in children with bone tumours in proximity to the proximal femoral physis, previously treated by hip disarticulation. Long-axis growth is preserved, allowing limb salvage. Since 1986, survival outcomes after limb salvage and amputation have been known to be equal.

Method

Retrospective review of all patients <16years undergoing extendable PFR at Royal National Orthopaedic Hospital (UK) between 04/1996 and 01/2006, recording complications, failures, procedures undertaken and patient outcomes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 51 - 51
1 Sep 2012
Maempel J Coathup M Calleja N Briggs T Cannon S Blunn G
Full Access

Background

Extendable partial femoral replacements (EPFR) permit limb salvage in children with bone tumours in proximity to the physis. Older designs were extended through large incisions or minimally invasive surgery. Modern EPFR are lengthened non-invasively. Lengthening improves functional score (Futani, 2006) but has been associated with complications including infection (Jeys, 2005). This study is the first to look specifically at the relationship between EPFR lengthening and complications.

Method

Retrospective review of 51 paediatric (<16 years) oncology patients undergoing primary (1 °) EPFR (minimally/noninvasive) between 06/1994 and 01/2006. Exclusions: 1 patient with 5cm extension without medical intervention and 5 patients with incomplete data.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 99 - 99
1 Sep 2012
Maempel J Coathup M Calleja N Maempel FZ Briggs T Cannon S Blunn G
Full Access

Background/Aims

The development of extendable prostheses has permitted limb salvage surgery in paediatric patients with bone tumours in proximity to the physis. Prostheses are extended to offset limb length discrepancy as the child grows. Aseptic loosening (AL) is a recognised complication. The implant stem must fit the narrow paediatric medullary canal and remain fixed while withstanding growth and increasing physical demands. Novel designs incorporate a hydroxyapatite (HA) coated collar that manufacturers claim improves bony ongrowth and stability, providing even stress distribution in stem and shoulder regions and providing a bone-implant seal, resulting in decreased AL and prolonged survival. This study aims to assess whether there is a relationship between bony ongrowth onto a HA collar and AL. Hypothesis: Bone ongrowth onto the HA collar of extendable prostheses is associated with more stable fixation and less AL despite patient growth.

Methods

Retrospective review of 51 primary partial femoral extendable prostheses implanted over 12 years from 1994–2006 (followed up to death at a mean of 2.5±2.2 years or last clinical encounter at a mean of 8.6 years) and 24 subsequent revisions, to ascertain failure rate and mode, together with a cohort study reviewing bony ongrowth onto the HA coated collar in 10 loose and 13 well fixed partial femoral, humeral and tibial implants. Patient growth was measured as a change in bone:implant-width ratio.