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	� OTHER

Artificial intelligence in 
orthopaedic surgery

EXPLORING ITS APPLICATIONS, LIMITATIONS, AND FUTURE DIRECTION

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the 
medical field is no exception. AI is an umbrella term defining the practical application of 
algorithms to generate useful output, without the need of human cognition. Owing to the 
expanding volume of patient information collected, known as ‘big data’, AI is showing prom-
ise as a useful tool in healthcare research and across all aspects of patient care pathways. 
Practical applications in orthopaedic surgery include: diagnostics, such as fracture recog-
nition and tumour detection; predictive models of clinical and patient-reported outcome 
measures, such as calculating mortality rates and length of hospital stay; and real-time re-
habilitation monitoring and surgical training. However, clinicians should remain cognizant 
of AI’s limitations, as the development of robust reporting and validation frameworks is of 
paramount importance to prevent avoidable errors and biases. The aim of this review article 
is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its 
existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative 
review expands upon the limitations of AI and future direction.
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Article focus
	� Comprehensive review of artificial intel-

ligence (AI) and its subfields, as well as 
existing applications and its role in ortho-
paedic surgery.
	� Critical presentation of validated and 

evolving AI research in orthopaedic 
surgery.
	� Limitations of AI and the need to estab-

lish robust validation and reporting 
frameworks.

Key messages
	� AI is showing promise as a useful tool 

in healthcare research and data science, 
including all aspects of patient care 
pathways.
	� Existing applications in ortho-

paedic surgery have shown 
promise in highlighting implant  
malposition; detecting features of loos-
ening; predicting length of hospital stay, 
costs involved, functional outcomes, and 

prognostic scores; and implant identifica-
tion in arthroplasty.
	� Clinicians should remain cognizant of AI’s 

limitations and proceed cautiously, until 
external validity is proven within accept-
able margins of error.

Strengths and limitations
	� This is a comprehensive literature review 

of recent advances and AI applications 
in orthopaedic surgery, detailing areas 
lacking validated research.
	� Our study does not entail quantitative 

synthesis of outcomes with the use of AI.

Introduction: artificial intelligence, 
time for clear nomenclature
The application of artificial intelligence (AI) is 
rapidly growing across many domains, with 
the field of medicine being no exception. 
Traditionally AI is an umbrella term, origi-
nally theorizing the replication of human 
intellect via computers.1 The broad definition 
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of AI is the practical application of complex algorithms to 
generate useful output, excluding the need for human 
cognitive intelligence.2,3 AI is becoming an integral part 
of modern society, ranging from air flight autopilot to 
fraud detection, social media advertisements, and the 
seemingly omniscient capabilities of ChatGPT.4 It is esti-
mated that AI could cut annual USA healthcare costs 
by $150  billion by 2026.5,6 A considerable component 
of the cost reduction stems from adopting a proactive 
health management approach, expected to result in 
fewer hospitalizations, fewer doctor visits, and reduced 
treatments.5,6 This may be attributed to early detection 
of disease with known cures, through automating the 
review of large volumes of data using AI with advanced 
individualized risk profiling.7

Owing to the exponentially expanding volume of 
patient information collected, known as ‘big data’, AI 
is showing promise as a useful tool in the healthcare 
research armamentarium. Algorithms based on clinical 
data sets (including electronic medical records, genomic 
level data, validated clinical scores and imaging etc.) 
for predicting patients’ clinical outcomes are rigorously 
being explored. This concept encompasses data sets 
so large that there is no conceivable way that humans 
could comprehend such a plethora of information 
without the use of technology.3,8 While AI can catego-
rize and make sense of big data, it is still only as good as 
the data provided and thus human contribution is para-
mount. The accuracy of its function can be progressively 
refined, as it has intriguingly been likened to successive 
human learning, whereby sequential exposure reinforces 
comprehension.2,3,9

While still in its infancy, the application of AI in the 
field of orthopaedics is a new frontier of data science. 
Orthopaedic surgery is already home to some of the 
most innovative technologies, such as robotic-assisted 
surgery, of which AI is an ever-growing part.10-18 Recently, 
the orthopaedic and wider healthcare literature have 
witnessed a surge in studies using AI, which on many 
occasions employ methodology not very different to 
traditional prediction models. To describe the application 
of AI models in orthopaedic surgery, it is necessary to 
delineate the concepts of each architectural design. The 
basis through which each model is created describes the 
level of complexity, power, and importantly the limita-
tions. It is therefore of paramount importance to differ-
entiate between different types of AI (Figure 1), in order 
to achieve consistency and ensure transparency for the 
readers. To accomplish that, enhanced understanding of 
AI and its subcategories is necessary, while abandoning a 
focus on the umbrella term AI could be considered when 
it comes to orthopaedic research.

The purpose of this narrative review article is to provide 
a comprehensive understanding of AI and its subfields, 
in addition to delineating its role in orthopaedic surgery 
and describing current existing applications. Further-
more, this review explores the current limitations and 
touches upon future direction.

Machine learning
AI encompasses a subfield called machine learning (ML) 
(Figure  1).19 ML can be described as harnessing the 
dimensions to ‘learn and adapt’ based on algorithms and 
input data, often surpassing human comprehension.20 
Further subclassifications include supervised, unsuper-
vised, and reinforcement ML. Supervised ML involves 
input data being labelled by humans and correcting 
the computer’s mistakes. For example, a computer is 
shown thousands of images of a normal radiograph (the 
computer recognizes all the peculiarities from pixels 
identified by human supervision) and then thousands of 
images of a broken bone. An AI algorithm dictates the 
recognition of what is labelled ‘broken’ or ‘not broken’. 
ML is only halfway complete and, following this process, 
the model must be refined or trained to validate accu-
racy before wider use. In the context of supervised ML, 
‘ground truth’ data used to train the ML models are typi-
cally labelled or annotated by humans, who indicate the 
correct answer or outcome for a given input.19,20 Having 
high-quality, accurate ground truth data is crucial in 
validating ML models. Furthermore, when the model is 
trained to provide accurate ground truth, this allows for 
reuse of the model on new problems, which is referred to 
as ‘transfer learning’. In this way, the developer can avoid 
having to recreate entire new algorithms from new data 
sets, therefore saving huge amounts of time and money. 
Transfer learning has been applied to fracture recogni-
tion and osteoarthritis (OA) quantification, to name but 
a few.21

Unsupervised ML processes unlabelled training data, 
with a known outcome of interest, clustering them as 
known or unknown. In the aforementioned example, 
radiograph images of the same anatomical bone (e.g. a 
hip radiograph) allow the computer to ascertain what 
normal looks like. The computer then groups similar 
data and patterns them together (e.g. for radiographs 
of broken and unbroken bones), using an algorithm.22,23 
The repetition of these functions can be used to fine-tune 
the algorithm and improve accuracy. This process (called 
an ‘epoch’) may be repeated up to a thousand times to 
achieve the accuracy required, before an algorithm can 
move beyond proof-of-concept and enter the validation 
phase. It is through this mechanism that a final algorithm 
can be established and applied to unknown data sets as 
required.8,19

Semi-supervised or reinforcement ML learns by explo-
ration of the environment based on reward or punish-
ment from certain actions (e.g. self-driving cars from 
Tesla).1,22,23 There is a growing body of research in deep 
reinforcement learning for the application of models in 
computer-assisted orthopaedic surgery, reporting capa-
bilities of generating real-world, clinical-grade solutions 
without needing patient data for training.24 However, 
validated and reproducible high-quality tools are awaited.
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Deep learning and neural networks
Deep learning (DL) is a more progressive and comprehen-
sive subcategory of ML, comprising numerous, complex 
layers of algorithm, mirroring the neural networks seen 
in the brain through artificial neural networks (ANNs) 
(Figure  1).8,20,25,26 Where ML comprises thousands to 
millions of parameters, DL may have billions, with 
varying degrees and layers of complexity to broaden the 
function for which it is programmed. Akin to ML, much of 
DL requires human supervision to learn and be modified. 
However, there is an increasing research interest in DL 
models functioning without the need for human supervi-
sion. It operates with unlabelled and unstructured input, 
permitting the output of interest. An example of DL that 
is being explored in the world of orthopaedics is convo-
lutional neural networks (CNNs), often purposed for 
imaging analysis and computer vision tasks.25,27

There has been a surge of research in CNNs pertaining 
to diagnostic and image recognition, classification and 
tumour detection, segmentation, and natural language 
processing (NLP), of which the field of orthopaedics is 

no exception. The mathematical architecture of CNNs 
may be thought of as an overlapping of grid patterns.25 
The basic building blocks include convolutional layers 
(a combination of linear and non-linear operations used 
to extract image data), pooling layers (to reduce learn-
able parameters), and fully connected layers designed to 
automatically propagate image input and learn spatial 
hierarchies of features through a forward and backward 
propagation algorithm.25 For the most part, CNNs are 
made up of these three layers: the first two layers, convo-
lution and pooling, perform feature extraction, whereas 
the third, a fully connected layer, maps the extracted 
features into final output, such as a classification.25

Natural language processing and electronic 
medical records
NLP describes computer comprehension of language.3 
Functionally, it can scan clinical medical records and 
make sense of information such as operative notes and 
radiology reports. NLP algorithms have the potential to 
automate data collection for diagnostic elements, which 

Fig. 1

Key artificial intelligence applications in trauma and orthopaedic surgery. ACL, anterior cruciate ligament; NLP, natural language processing.
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could directly improve patient care and augment cohort 
surveillance.28 The implications of NLP may include 
aggregating and analyzing large databases abundant in 
information, usually too arduous for manual sorting, and 
reducing documentation time.3,29 It has already seen use 
in organizing relevant data from electronic medical health 
records during cases of periprosthetic fractures, and 
aiding the diagnosis of periprosthetic joint infections.28,30 
For example, data elements that comprise the Musculo-
skeletal Infection Society (MSIS) criteria31 were manually 
extracted and used as the gold standard for validation. 
The NLP algorithm was applied to extract the presence 
of sinus tract, purulence, pathological documentation of 
inflammation, and growth of cultured organisms from 
medical records.

Image recognition and diagnostics
Fracture recognition.  The past decade has seen imag-
ing analysis become a considerable focal point among 
AI research.32 Numerous authors have studied the ability 
of CNNs to identify various upper and lower limb frac-
tures on radiographs, such as hip, calcaneus, and radial 
fractures. Accuracy of up to 98% has been reported, as 
well as the potential of CNNs to outperform or perform 
non-inferiorly to humans.26,32–36 It has also been report-
ed that DL models could recognize laterality, exam view, 
and body part in wrist, hand, and ankle radiographs. 
They have also shown promise in achieving more noto-
riously difficult diagnoses, such as scaphoid fractures, as 
effectively as human specialists.20,30,35,37 It should not be 
forgotten that the performance of CNNs needs to be vali-
dated both internally and externally before clinical adop-
tion. While internal validation is proving quite successful, 
there are hurdles that make external validation difficult, 
e.g. for fracture classification. One reported issue is relat-
ing to different institutions using different labelling sys-
tems for radiographs or radiation dosages. In particular, 
if a given institution changes their protocols, previously 
validated algorithms may become invalid and problemat-
ic to translate.34

A recent paper by Oliveira E Carmo et al38 highlights 
the lack of external validity of CNNs for fracture detec-
tion in the literature. In a large systematic review, only 
four studies (11% of total studies identified) were found 
to show external validity, both temporal and geograph-
ical, beyond one hospital site. The authors recommend 
the use of standardized reporting guidelines in order to 
ascertain ground truth for CNNs in fracture recognition, 
such as the Clinical Artificial Intelligence Research (CAIR) 
checklist,39 to critically appraise performance of CNNs to 
facilitate eventual implementation into clinical practice.38

Tumour detection.  The potential of AI has been shown to 
extend beyond fracture recognition. Park et al40 showed 
that a CNN was able to eclipse the accurate detection of 
proximal femur bone tumours compared to clinicians.40 
Specifically, ML may prove useful for the diagnosis of 
more ambiguous primary bone and soft-tissue tumours, 
ones that are not clearly evident on plain radiographs. 

These applications have also been proposed to help 
predict patients’ prognosis, such as those with synovial 
sarcoma.20,23,41

Other diagnostic applications.  AI has also shown prom-
ising results in several other diagnostic applications, 
ranging from developmental abnormalities to soft-tissue 
knee injuries. A proof-of-concept investigation by Xie et 
al42 tested a CNN-based algorithm to improve the quali-
ty of MRI scans in tibial plateau fractures with combined 
meniscal defects.43 The authors documented a sensitivity 
of 96.9%, specificity of 93.2%, and accuracy of 95.3%, 
respectively, when MRI diagnostics were compared with 
arthroscopic findings. The clearer, enhanced AI imag-
ing produced by the CNN model led to a diagnosis that 
was consistent with intraoperative findings. This study is 
one of many that highlights feasible grounds for future 
research and advancements for current imaging modal-
ities.42 Regarding congenital abnormalities, such as hip 
dysplasia, studies have also shown practicalities for radi-
ological measurements in a quick and effective manner.44 
AI-assisted diagnosis and classification of OA from radi-
ographs have demonstrated similar accuracy to senior 
clinicians.20 Furthermore, CNNs for osteoporosis fracture 
recognition have been developed to directly evaluate 
bone mineral density from radiographs.45,46

AI image recognition may soon be a highly sought-
after application in orthopaedics, corroborated in a study 
by Jang et al47 where CNNs were reported to identify bone 
and soft-tissue landmarks as objects on radiographs. 
Additionally, more accurate calculations using the DL 
model for knee alignment may provide the potential for 
preoperative planning in total knee arthroplasty (TKA).47 
However, several limitations such as the established 
ground truths, radiograph quality, alignment, or rotation 
indicate the variability and, as such, these methods are 
not yet employed in preoperative planning for TKA.47

A recent scoping review by Gurung et al48 investigated 
the application of AI in analyzing postoperative radio-
graphs following total hip arthroplasty (THA) and TKA 
to ensure adequate implant positioning, and reported > 
90% accuracy. While the 12 individual studies were large, 
using up to 320,000 radiographs, their robustness was a 
point of contention. The authors concluded that there is 
currently insufficient evidence to use AI for said purposes 
in clinical practice.48

Automated identification of arthroplasty implants 
using DL has been reported to be a useful augment in revi-
sion surgery, enabling accurate planning of the operative 
technique and necessary extraction equipment.8,25,34,49 
A study by Borjali et al49 assessed a novel, highly accu-
rate, and fully automatic approach identifying the design 
of THA prosthesis from plain radiographs. An AI model 
able to identify prosthesis within milliseconds, versus 20 
to 30  minutes, can have huge implications for patient 
safety.49 Furthermore, it has been shown that in 10% 
of cases, surgeons are unable to identify the prosthesis 
preoperatively and 2% intraoperatively.49 This has been 
shown to be associated with increased operating time, 
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blood/bone loss, recovery time, and healthcare costs.49 A 
sensitivity up to 94% and specificity of 97% in identifying 
implant loosening following hip and knee arthroplasty 
using CNNs has been reported.20 Of note, the CNN algo-
rithm outperformed the human counterpart from plain 
radiographs, illustrating its potential role in preventing 
serious complications and redistributing clinical time to 
improve patient care.20,50

Predictive algorithms
Recent literature has showcased the predictive value of 
AI models to calculate mortality rates, transfusion risk, 
and length of hospital stay following elective arthro-
plasty.8,34,51–53 This could be of particular benefit when 
considering patient care pathways, from preoperative 
optimization to recovery plans and resource alloca-
tion.25 It has also been reported that DL/ML models 
could predict, up to a decade in advance, knee and hip 
OA by means of bone texture analysis on the proximal 
femur and acetabulum, and clinical risk factors, with 
acceptable accuracy.8,21,54 Conceptually, this could act as 
a risk stratification tool, identifying individuals in need of 
early intervention.25 A recent study comparing a conven-
tional ML, ANN model with traditional logistic regression 
of 28,742  patients from the National Surgery Quality 
Improvement Programme (USA) has demonstrated 
similar predictability of clinically important factors for 
safe same-day discharge post TKA using the ANN model.51

Multiple AI predictive models assimilating large 
amounts of patient data to improve healthcare outcomes 
have been described. Examples in orthopaedic surgery 
include AI models predicting suitable patients for nerve 
blocks following anterior cruciate ligament (ACL) recon-
struction.32 Kim et al55 developed a DL algorithm to 
predict the mortality and morbidity risk following spinal 
fusion, and found this to be more accurate compared 
to the traditionally used scoring system by the Amer-
ican Society of Anesthesiologists.56 Another interesting 
application of AI is showcased by Kumar et al,57 who 
developed a ML algorithm predicting patient outcomes 
in shoulder arthroplasty. The input comprises shoulder 
range of motion, demographic data, American Shoulder 
and Elbow Surgeons (ASES) scores,58 and visual analogue 
scale (VAS) pain scores, to assess prognosis and range of 
motion up to seven years post-treatment, with up to 82% 
reported accuracy.8,57,59 A recent study involving a total 
of 111,147 patients undergoing primary shoulder arthro-
plasty reported 73.1% to 91.8% accuracy using ANN in 
predicting length of stay, hospital costs, and discharge 
disposition for both chronic/degenerative and acute/
traumatic conditions.60 From a recent retrospective multi-
centre analysis of nearly 2,000  patients following total 
shoulder arthroplasty, a model to predict two-year ASES 
scores has been developed and validated. The model 
was reported to be accurate within the minimal clinically 
important difference in 85% of patients.22

The role of AI in surgical training
AI could play a pivotal role in orthopaedic surgical 
training, where repetition and the existence of a training 
framework are imperative to acquiring competence.61 
Through ML and computer vision, AI now has the 
capacity to gather data and provide meaningful, person-
alized feedback on surgical abilities. Lavanchy et al62 
created a ML algorithm capable of assessing the skill of 
laparoscopic cholecystectomies, which demonstrated 
87% accuracy in identifying the kinematics of surgical 
instruments as a surrogate measure of efficiency.14–16,61 
This provided constructive feedback to the operator and 
represents a system that could feasibly be translated into 
orthopaedics.62 The integration of AI systems (such as 
the Virtual Operative Assistant) into virtual reality (VR) 
and augmented reality (AR) can help to attain objective 
critique without depending on the typical ‘apprentice-
ship’ learning modality.61 Siemionow et al63 provided 
an example of successful AI incorporation into AR. The 
researchers developed a ML system enabling the overlay 
of a 3D spinal image onto cadavers, facilitating accurate 
metal probe placement into lumbar vertebrae.63 The 
overarching advantage of these technologies is patient 
safety, given surgical trainees can acquire experience 
while mitigating risk to patients.

Rehabilitation and postoperative care
The postoperative phase has been highlighted as a key 
area of AI interest.64 A growing body of studies have 
reported the use of smartphones to gather continuous, 
remote data on a patient’s vitals and rehabilitation prog-
ress following TKA.3,8 ML-based algorithms allow tracking 
of physiotherapy engagement and exercise participa-
tion, and can alert healthcare professionals if patient 
milestones are not met.65 Similarly, the surveillance of 
patients’ vitals, wellbeing, and complications, such as 
deep vein thrombosis, has been documented extensively 
in the literature.64,66,67 These AI features have been docu-
mented to reduce readmission rates following TKA and 
THA. However, no statistically significant difference in the 
rate of hospital discharge without remote monitoring has 
been reported.68,69 Interestingly, it has also been proposed 
that ML algorithms could prove a useful augment in reha-
bilitation following ACL surgery, by using biomechanical 
data to assess for asymmetries in gait analysis.32,70

DL has been touted by multiple studies to be capable 
of predicting the risk of complications leading to revi-
sion surgery, using postoperative hip arthroplasty radio-
graphs. Rouzrokh et al71 found that a DL algorithm trained 
on over 90,000 postoperative images predicted implant 
dislocation within five years of surgery. This model had 
a rather high negative predictive value. However, this 
may still provide a useful ‘ruling out’ method for high-
risk patients, and demonstrates the potential role of AI in 
guiding pre-emptive interventions.8,30,71
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Limitations to AI in orthopaedics
AI is associated with considerable capital costs and finan-
cial burden on healthcare systems, potentially impeding 
its widespread adoption.1,65 Notwithstanding this, care-
fully designed cost-benefit analyses could delineate 
whether its utility in orthopaedics results in cost-effective 
interventions.72–74 The risk of breaching patient confi-
dentiality is inherent with large data sets, and therefore 
should be treated as a prominent ethical consideration.1,3 
As with any research being generalized to the wider clin-
ical setting, AI models must go through a rigorous process 
of validation. Norgeot et al75 proposed a minimum set 
of documentation to bring similar levels of transpar-
ency and utility to the application of AI in medicine and 
surgery: minimum information about clinical AI model-
ling (MI-CLAIM). These guidelines involve six areas that 
require attention when appraising CNN models, and aim 
to inform clinical adoption of AI models: 1) study design; 
2) separation of data into partitions for model training 
and model testing; 3) optimization and final model selec-
tion; 4) performance evaluation; 5) model examination; 
and 6) reproducible pipeline.75

The application of AI models outside of the data or insti-
tution of which it is designed (external validity) should 
be carefully considered. Systematic errors within algo-
rithms could lead to negligent and widespread implica-
tions for patients. Accordingly, a systematic approach to 
designing and validating models using proven concepts 
is required to avoid such errors before translation into 
clinical practice. To mitigate this risk, AI is intended as 
an adjunct to the clinical decision-making process, not 
a substitute. Clinicians should remain cognisant of AI’s 
limitations and proceed cautiously, until external validity 
is proven within acceptable margins of error.3,37

AI is as good as its data, and the development of 
robust reporting frameworks is vital to preventing avoid-
able errors.70,76–78 Guidelines for establishing models are 
necessary, such as the Transparent Reporting of a multi-
variate prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) initiative,77 which has already been 
used in validating ML in orthopaedics. The complexity of 
CNNs usually depends upon the complexity of the input 
data. The more convoluted the input data are, the more 
comprehensive mathematical algorithms are required 
to deliver the desired output. An inherent problem 
described repeatedly in the literature is the generation of 
complex CNNs, solely reflecting the data they are set up 
to evaluate.70 Overfitting refers to a model that fails gener-
alizability well after model training, and is particularly 
common with models that are nonparametric/nonlinear 
and have more flexibility when learning the target func-
tion. The lack of generalizability may be attributed to the 
model learning the random fluctuation details and noise 
as part of the training data. Therefore, when translated 
to external data sets the model is unable to recognize the 
new patterns as efficiently. Furthermore, this issue occurs 
when the model mirrors and focuses entirely on minor 
characteristics present in the training data set instead of 

perceiving more generalized patterns beneath the data, 
and therefore requires continuous learning with larger 
volumes of data.34,77,78 It is vital for clinicians to be aware 
of this risk, and a collective effort is needed from multiple 
stakeholders to ensure appropriate collection, curation, 
and annotation of data that are validated beyond a given 
institution.70

Conclusion and future considerations
The use of AI in orthopaedics bears the potential to 
improve patient outcomes and reduce the workload of 
healthcare professionals. An auspicious future devel-
opment is the innovative ‘digital twin’ pertaining to a 
virtual representation of oneself. This is thought to be 
at the cornerstone of precision medicine, able to predict 
diseases, treatment outcomes, and preventive interven-
tions tailored to the individual patient phenotype, even 
down to the genome level. The effect this could have 
on the evolution of orthopaedic surgery and medicine 
is almost incomprehensible. AI in orthopaedic surgery 
shows promise in identifying hip and knee implants, 
highlighting implant malposition, detecting features of 
loosening, and predicting length of hospital stay, costs 
involved, functional outcomes, and prognostic scores. 
The current state of AI technology requires a coordinated 
effort to effectively progress from proof-of-concept into 
clinical practice. In this vein, the establishment of system-
atic and robust validation and reporting frameworks is 
of utmost importance to allow a safe adoption of this 
technology.
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